

Scanned by TapScanner

OPTIMASI PARAMETER PROSES 3D PRINTING TERHADAP AKURASI DIMENSI MENGGUNAKAN FILAMEN ABS DENGAN METODE TAGUCHI

PROYEK AKHIR

Laporan akhir ini dibuat dan diajukan untuk memenuhi salah satu syarat kelulusan Sarjana Teraapan Diploma IV Politeknik Manufaktur negeri Bangka Belitung

Disusun oleh:

Reza Dwi Putra NPM: 1041822

POLITEKNIK MANUFAKTUR NEGERI BANGKA BELITUNG TAHUN 2021/2022

LEMBAR PENGESAHAN

OPTIMASI PARAMETER PROSES 3D PRINTING TERHADAP AKURASI DIMENSI MENGGUNAKAN FILAMEN ABS DENGAN METODE TAGUCHI

Olch:

Reza Dwi Putra NPM: 1041822

Laporan akhir ini telah disetujui dan disahkan sebagai salah satu syarat kelulusan Program Sarjana Terapan Politeknik Manufaktur Negeri Bangka Belitung

Menyetujui,

Pembimbing1

Zaldy Sirwansyah Suzen, S.S.T,M.T

Pembimbing 2

Hasdiansah, S. S. T., M. Eng

Penguji 1

(Erwarsyah, S.S.T., M.T)

Penguji 2

(Yuli Dharta, S.S.T., M.T)

PERNYATAAN BUKAN PLAGIAT

Yang bertanda tangan dibawah ini:

Nama : Reza Dwi Putra NPM : 1041822

Dengan judul: Optimasi Parameter Proses 3D *Printing* Terhadap Akurasi Dimensi Menggunakan Filamen ABS Dengan Metode Taguchi

Menyatakan bahwa laporan akhir ini adalah hasil kerja kami sendiri dan bukan merupakan plagiat. Pernyataan ini kami buat dengan sebenarnya dan bila ternyata dikemudian hari ternyata melanggar pernyataan ini, kami bersedia menerima sanksi yang berlaku.

Nama Mahasiswa
Tanda Tangan

1. Reza Dwi Putra

ABSTRAK

Prinsip kerja 3D printing adalah dengan cara menggunakan metode penambahan material dalam membuat produk yang sering disebut proses Additive manufacturing. Salah satu teknologi 3D printing yang paling banyak digunakan adalah Fused Deposition Modelling (FDM), yang diharapkan agar dapat menggantikan bahan logam pada umumnya untuk pembuatan spare part mesin ataupun peralatan yang membutuhkan biaya yang lebih murah dibandingkan dengan bahan logam. Tujuan dilakukan penelitian ini adalah untuk Mendapatkan setting parameter proses yang optimal dalam menghasilkan objek 3D model dengan akurasi dimensi yang paling akurat menggunakan filament ABS (Acrylonitrile Butadiene Styrene). Penelitian ini menggunakan metode Taguchi dengan desain eksperimen yang digunakan L27 OA. Parameter proses yang digunakan dalam penelitian yaitu Layer Height(mm), Inffil Speed(mm/s), Speed Perimeters(mm/s), Nozzle temperature ($^{\circ}C$), Bed temperature($^{\circ}C$), Infil Density (%), Fan Speed (%), Flow Rate (%), Infill Overlap(%). nilai parameter proses yang optimal untuk akurasi dimensi diameter luar spesimen yaitu Speed Perimeters (40mm/s), Infill Speed (40mm/s), Layer Height (0,28mm), Fan Speed (10%), Flow Rate (90%), Bed Temperature (95°C), Infill Density (25%), Infill Overlap (10%), Nozzle Temperature (240°C) dengan nilai uji 9,983 mm. Nilai parameter optimal tinggi spesimen yaitu Layer Height (0,28mm), Speed Perimeters (40mm/s), Infill Speed (40mm/s), Bed Temperature (100°C), Nozzle Temperature (240°C), Flow Rate (100%), Infill Overlap (5%), Infill Density (25%), Fan Speed (5%) dengan nilai uji 9,972 mm. Nilai parameter proses yang optimal diameter dalam yaitu Layer Height (0,20mm), Nozzle Temperature (250°C), Speed Perimeters (45mm/s), Infill Speed (40mm/s), Infill Overlap (15%), Flow Rate (100%), Bed Temperature (100°C), Infill Density (30%), Fan Speed (5%) dengan nilai uji 7,798 mm.

Kata kunci: 3D Printing, FDM, ABS, Akurasi Dimensi

ABSTRAK

The working principle of 3D printing is by using the method of adding materials in making products which is often called the Additive manufacturing process. One of the most widely used 3D printing technologies is Fused Deposition Modeling (FDM), which is expected to be able to replace metal materials in general for the manufacture of machine spare parts or equipment that require lower costs compared to metal materials. The purpose of this research is to obtain optimal process parameter settings in producing 3D model objects with the most accurate dimensional accuracy using ABS (Acrylonitrile Butadiene Styrene) filament. This study uses the Taguchi method with an experimental design used L27 OA. The process parameters used in this research are Layer Height(mm), Inffil Speed(mm/s), Speed Perimeters(mm/s), Nozzle temperature ($^{\circ}C$), temperature(°C), Infil Density (%), Fan Speed (%), Flow Rate (%), Infill Overlap(%). The optimal process parameter values for the accuracy of the dimensions of the outside diameter of the specimen are Speed Perimeters (40mm/s), Infill Speed (40mm/s), Layer Height (0.28mm), Fan Speed (10%), Flow Rate (90%), Bed Temperature (95°C), Infill Density (25%), Infill Overlap (10%), Nozzle Temperature (240°C) with a test value of 9.983 mm. The optimal parameter values for specimen height are Layer Height (0.28mm), Speed Perimeters (40mm/s), Infill Speed (40mm/s), Bed Temperature (100°C), Nozzle Temperature (240°C), Flow Rate (100 %), Infill Overlap (5%), Infill Density (25%), Fan Speed (5%) with a test value of 9.972 mm. The optimal process parameter values for inner diameter are Layer Height (0.20mm), Nozzle Temperature (250°C), Speed Perimeters (45mm/s), Infill Speed (40mm/s), Infill Overlap (15%), Flow Rate (100%), Bed Temperature (100°C), Infill Density (30%), Fan Speed (5%) with a test value of 7,798 mm.

Keywords: 3D Printing, FDM, ABS, Dimensional Accuracy

KATA PENGANTAR

Puji syukur penulis panjatkan atas kehadirat Tuhan Yang Maha Esa dan atas karunianya pebulis dapat menyelesaikan Proyek Akhir dengan judul "Optimasi Parameter Proses 3D *Printing* Terhadap Akurasi Dimensi Filamen ABS Dengan Menggunakan Metode Taguchi". Penulisan Proyek Akhir ini dilakukan untuk memenuhi syarat kelulusan DIV di jurusan Teknik Mesin Politeknik Manufaktur Negeri Bangka Belitung.

Dalam penulisan proyek akhir ini penulis menyadari tanpa adanya bantuan dari berbagai pihak penulis tidak akan dapat menyelesaikan proyek akhir ini. Sehingga penulis ingin mengucapkan terimakasih sebesar-besarnya kepada:

- 1. Kepada Orang Tua dan Kakak penulis yang selalu memberikan doa dan dukungannya selama penulis mengerjakan proyek akhir ini.
- 2. Bapak I Made Andik Setiawan, M. Eng., Ph.D., selaku Direktur Politeknik Manufaktur Negeri Bangka Belitung.
- 3. Zaldy Sirwansyah Suzen, S.S.T,M.T selaku Pembimbing utama penulis yang telah menentukan, menyetujui serta telah banyak memberikan konsep pemikiran tentang pelaksanaan proyrk akhir ini.
- 4. Bapak Hasdiansah, S.S.T., M.Eng., selaku Pembimbing kedua yang telah memberikan masukan-masukan pada proyek akhir ini.
- 5. Bapak Pristiansyah, S.S.T., M.Eng., selaku Kepala Jurusan Teknik Mesin.
- Bapak Boy Rollastin, S.Tr., M.T., selaku Kepala Program Studi D4 Teknik Mesin dan Manufaktur.
- 7. Seluruh Dosen dan Staf Jurusan Teknik Mesin yang telah membantu dalam pelaksanaan proyek akhir ini.
- 8. Teman-teman Kelas A Teknik Mesin Angkatan 25 yang sudah memberikan dukungan dan membantu.

Akhir kata penulis berharap Tuhan membalas kebaikan semua pihak yang telah membantu menyelesaikan proyek akhir ini. Semoga proyek akhir ini dapat

memberikan manfaat bagi peneliti di Politeknik Manufaktur Negeri Bangka Belitung pada masa yang akan datang. Aamiin.

Sungailiat, Januari 2021

Penulis

DAFTAR ISI

LEMBAR PENGESAHAN i
PERNYATAAN BUKAN PLAGIATii
ABSTRAKiii
<i>ABSTRAK</i> iv
KATA PENGANTAR v
DAFTAR GAMBAR ix
DAFTAR TABEL x
BAB I PENDAHULUAN
1.1 Latar belakang
1.2 Rumusan masalah
1.3 Batasan masalah
1.4 Tujuan penelitian
BAB II DASAR TEORI 4
2.1 Mesin 3D Printer
2.2 Mekanisme Proses 3D Printing5
2.3 Filamen ABS (Acrylonitrile Butadiene Styrene)
2.4 Metode Taguchi6
2.5 Analisis Variansi (ANAVA)
BAB III METODELOGI PENELITIAN
3.1 Diagram Alir
3.2 Objek Penelitian
3.3 Tempat Penelitian dan Pengujian
3.4 Bahan dan Alat yang Digunakan Dalam Penelitian
3.4.1 Bahan Penelitian
3.4.2 Alat Penelitian
3.5 Proses Penelitian
3.5.1 Mengidentifikasi Masalah
3.5.2 Studi Literatur
3.5.3 Menentukan parameter
3.5.4 Pemilihan Matrik Ortogonal

3.5.5 Desain Objek	19
3.5.6 Slicing STL Spesimen dan Masukan SD Card ke Mesin 3D printin	ıg 19
3.5.7 Desain Taguchi L27 OA	19
3.5.8 Pembentukan Spesimen	21
3.5.9 Pengolahan data	21
3.5.10 Analisis Data	21
BAB IV HASIL DAN PEMBAHASAN	22
4.1 Pengambilan Data Hasil Percobaan	22
4.2 Pengolahan Data Hasil Eksperimen	27
4.2.1 Mean Plot dan S/N Ratio "Smaller is better" Diameter Luar Spesi	
4.2.2 Mean Plot dan S/N Ratio "Smaller is better" Tinggi Spesimen	
4.2.3 Mean Plot dan S/N Ratio "Smaller is better" Diameter Dalam Spe	
4.3 Analisis Varian Rasio S/N	
4.4 Uji Konfirmasi	54
BAB V KESIMPULAN	
5.1 Kesimpulan	58
5.2 Saran	58
DAFTAR PUSTAKA	59
Lampiran 1	61
Lampiran 2	
Lampiran 3	65

DAFTAR GAMBAR

Gambar 3.1 Diagram Alir
Gambar 3.2 Acrylonitrile Butadiene Styrene (ABS)
Gambar 3.3 Mesin 3D Printing Anet ET4
Gambar 3.4 MicroSD Sandisk Ultra Gen10
Gambar 3.5 Autodesk Fusion 360
Gambar 3.0.6 Prusaslicer
Gambar 3.7 Micrometer Digital
Gambar 3.8 Jangka Sorong Digital
Gambar 3.9 Desaind Dimensi Objek Cetak
Gambar 3.10 Pembentukan Spesimen
Gambar 4.1 proses pencetakan spesimen
Gambar 4.2 Spesimen Hasil Pencetakan
Gambar 4.3Proses Pengukuran Spesimen
Gambar 4.4 Grafik Mean Plot Diameter Luar Spesimen
Gambar 4.5 Grafik S/N Ratio Diameter Luar Spesimen
Gambar 4.6 Grafik Mean Plot Tinggi Spesimen
Gambar 4.7 Grafik S/N Ratio Tinggi Spesimen
Gambar 4.8 Grafik Mean Plot Diameter Dalam Spesimen
Gambar 4.9 Grafik S/N Ratio Diameter dalam Spesimen
Gambar 4.10 Spesimen Uji Konfirmasi Diameter Luar
Gambar 4.11 Spesimen Uji Konfirmasi Tinggi Spesimen
Gambar 4.12 Spesimen Uii Konfirmasi Diameter Dalam

DAFTAR TABEL

Tabel 3.1 Spesifikasi Mesin 3D Printer Anet ET4
Tabel 3.2 Nilai Parameter proses pencetakan filamen ABS
Tabel 3.3 Total Derajat Kebebasan Faktor dan Level
Tabel 3.4 Desain Faktorial L27
Tabel 4.1 Desain Faktorial penelitian L27 OA
Tabel 4.2 Hasil Pengukuran Diameter Luar
Tabel 4.3 Hasil Pengukuran Tinggi
Tabel 4.4 Hasil Pengukuran Diameter Dalam
Tabel 4.5 Hasil Mean Plot Diameter Luar Spesimen
Tabel 4.6 Hasil S/N Ratio Diameter Luar Spesimen
Tabel 4.7 Hasil Mean Plot Tinggi Spesimen
Tabel 4.8 Hasil S/N Ratio Tinggi Spesimen
Tabel 4.9 Hasil Mean Plot Diameter Dalam Spesimen
Tabel 4.10 Hasil S/N Ratio Diameter dalam Spesimen
Tabel 4.11 Analysis of variance Diameter Luar
Tabel 4.12 Keputusan Uji Diameter Luar
Tabel 4.13 Perbandingan level dari Layer Height terhadap respon S/N Diameter
Luar
Tabel 4.14 Perbandingan level dari Infill Speed terhadap respon S/N Diameter
Luar
Tabel 4.15 Perbandingan level dari Speed Perimeters terhadap respon S/N
Diameter Luar
Tabel 4.16 Perbandingan level dari Nozzle Temperature terhadap respon S/N
Diameter Luar
Tabel 4.17 Perbandingan level dari Bed Temperature terhadap respon S/N 40
Tabel 4.18 perbandingan level dari Infill Density terhadap respon S/N Diameter
Luar 40

Tabel 4.19 Perbandingan level dari <i>Fan Speed</i> terhadap respon S/N Diameter Luar
41
Tabel 4.20 perbandingan level dari Flow Rate terhadap respon S/N Diameter Luar
41
Tabel 4.21 perbandingan level dari <i>Infill Overlap</i> terhadap respon S/N Diameter
Luar
Tabel 4.22 Analysis of variance Tinggi
Tabel 4.23 Keputusan Uji Tinggi
Tabel 4.24 Perbandingan level dari Layer Height terhadap respon S/N Tinggi 44
Tabel 4.25 Perbandingan level dari <i>Infill Speed</i> terhadap respon S/N Tinggi 44
Tabel 4.26 Perbandingan level dari Speed Perimeters terhadap respon S/N Tinggi
Tabel 4.27 Perbandingan level dari Nozzle Temperature terhadap respon S/N
Tinggi
Tabel 4.28 Perbandingan level dari Bed Temperature terhadap respon S/N Tinggi
Tabel 4.29 Perbandingan level dari <i>Infill Density</i> terhadap respon S/N Tinggi 46
Tabel 4.30 Perbandingan level dari <i>Fan Speed</i> terhadap respon S/N Tinggi 47
Tabel 4.31 Perbandingan level dari flow Rate terhadap respon S/N Tinggi 47
Tabel 4.32 Perbandingan level dari <i>Infill Overlap</i> terhadap respon S/N Tinggi . 48
Tabel 4.33 Analysis of variance Diameter Dalam
Tabel 4.34 Keputusan Uji Diameter Dalam
Tabel 4.35 Perbandingan level dari Layer Height terhadap respon S/N Diameter
Dalam 50
Tabel 4.36 Perbandingan level dari Infill Speed terhadap respon S/N Diameter
Dalam 50
Tabel 4.37 Perbandingan level dari Speed Perimeters terhadap respon S/N
Diameter Dalam 51
Tabel 4.38 Perbandingan level dari Nozzle Temperature terhadap respon S/N
Diameter Dalam 51

Tabel 4.39 Perbandingan level dari <i>Bed Temperature</i> terhadap respon S/N	
Diameter Dalam	52
Tabel 4.40 Perbandingan level dari Infill Density terhadap respon S/N Diameter	
Dalam	52
Tabel 4.41 Perbandingan level dari Fan speed terhadap respon S/N Diameter	
Dalam	53
Tabel 4.42 Perbandingan level dari Flow Rate terhadap respon S/N Diameter	
Dalam	53
Tabel 4.43 Perbandingan level dari Infill Overlap terhadap respon S/N Diameter	•
Dalam	54
Tabel 4.44 Hasil Uji Konfirmasi Diameter Luar	55
Tabel 4.45 Hasil Uji Konfirmasi Tinggi Spesimen	55
Tabel 4.46 Hasil Uji Konfirmasi Diameter Dalam	56
Tabel 4.47 Perbandingan Bentuk Pejal Dan Pipa Dengan Toleransi \pm 0,5 mm :	57
Tabel 4.48 Perbandingan Bentuk Pejal Dan Pipa Dengan Toleransi ± 0,5 mm :	57

BAB I

PENDAHULUAN

1.1 Latar belakang

Dunia industri saat ini mengalami kemajuan yang sangat pesat diantaranya teknologi 3D *printing* yang mampu membawa perubahan besar pada dunia. Teknologi ini juga lebih dikenal dengan sebutan *additive layer manufacturing*. 3D *printing* merupakan salah satu terobosan baru dalam dunia teknologi. Terobosan ini sangat populer di seluruh belahan dunia, terutama dikalangan akademisi dan industri. Munculnya teknologi 3D *printing* sangat berpengaruh pada beberapa bidang industri, terutama dari segi ekonomi. Prinsip kerja 3D *printing* adalah dengan cara menggunakan metode penambahan material dalam membuat produk yang sering disebut proses *Additive manufacturing*. Dimana *Additive Manufacturing* telah banyak digunakan diberbagai bidang industri, termasuk konstruksi, kesehatan, *prototyping* dan biomekanik. Produk 3D *printing* inilah yang diupayakan agar dapat menggantikan bahan logam pada umumnya untuk pembuatan *spare part* mesin ataupun peralatan yang membutuhkan biaya yang lebih murah dibandingkan dengan bahan logam. salah satu teknologi 3D *printing* yang paling banyak digunakan adalah *Fused Deposition Modelling* (FDM).

Fused Deposition Modelling (FDM) merupakan teknik 3D printing yang digunakan untuk mencetak produk menggunakan filamen sebagai material. Ada Dua material yang paling umum digunakan adalah ABS dan PLA sehingga sangat penting mengetahui akurasi dimensi produk. Teknologi 3D Printing FDM mampu membuat produk duplikat dengan akurat material ABS. ABS (Acrylonitrile Butadiene Styrene) adalah polimer dari hasil minyak bumi yang bersifat thermoplastic, penggunaan material ini juga tidak kalah popular dari filamen PLA karena filamen ABS ini tersedia dalam berbagai macam warna yang membuatnya populer dikalangan pengguna printer 3D sehingga objek atau model benda yang

dihasilkan akan lebih menarik, secara mekanis filamen ini sangat kuat dan memiliki resistansi terhadap suhu tinggi sehingga model yang dibuat akan menjadi tahan lama (Mpik, 2017).

(Hasdiansah, et al., 2020) telah melakukan penelitian terhadap filamen PLA food grade pengaturan parameter proses yang terbaik menggunakan suhu nozzle 90°C, suhu bed 55°C, dan tebal layer 0,2 mm. (Pristiansyah, et al., 2019) telah meneliti bahwa parameter proses yang paling berpengaruh pada 3D Printing FDM dengan menggunakan filamen eflex terhadap akurasi dimensi produk cetak, menunjukkan bahwa flowrate 110 %, layer thickness 0,10 mm, nozzle temperature 210 °C, print speed 40 mm/s, overlap 75 %, dan fan speed 50% adalah nilai parameter proses optimal untuk keakuratan dimensi X. Parameter proses dengan nilai flowrate 120 %, layer thickness 0,20 mm, nozzle temperature 230 °C, print speed 30 mm/s, overlap 75 %, dan fan speed 100% adalah untuk keakuratan dimensi Y. sedangkan untuk dimensi Z nilai parameter proses adalah flowrate 120 %, layer thickness 0,30 mm, nozzle temperature 210 °C, print speed 30 mm/s, overlap 50 %, dan fan speed 100%.

(Basavaraj, 2017) telah meneliti filamen ABS dan memperoleh pengaturan parameter terbaik terhadap akurasi dimensi menggunakan pengaturan *layer* thickness 0,3 mm, orientation angle 30°, dan shell thickness 0,8 mm. (Mantihal, 2017), menunjukkan bahwa wall thickness pada proses 3D Printing material coklat sangat berpengaruh terhadap dimensi produk cetak.

(Lanaro, 2017) telah meneliti bahwa parameter *cooling rates, movement rates, dan extrusion rates* pada proses 3D Printing material coklat memberikan dampak signifikan terhadap akurasi dimensi produk. (Tanoto, 2017) telah melakukan penelitian terhadap filamen ABS menunjukkan bahwa spesimen uji ASTM D638 type IV dicetak dengan orientasi tegak memiliki tingkat akurasi terbaik.

Berdasarkan latar belakang masalah dan penelitian yang telah dilakukan, maka penelitian ini dilakukan untuk mengetahui seberapa besar pengaruh dari masing-masing parameter proses terhadap kualitas produk hasil proses 3D *Printing* dengan menggunakan filamen ABS. Optimasi pada pengaturan parameter proses mesin Anet ET4 dilakukan untuk memperoleh akurasi dimensi yang baik.

1.2 Rumusan masalah

Dari latar belakang yang sudah dijelaskan maka rumusan masalah yaitu bagaimana cara mengoptimalkan parameter proses mesin 3D *Printing* dalam mencetak filamen ABS ?

1.3 Batasan masalah

Batasan masalah pada penelitian ini yaitu:

- 1. Jenis mesin 3D *Printing* yang akan digunakan dalam penelitian ini adalah mesin 3D *Printing* FDM XYZ Area 220 mm x 220 mm x 250 mm.
- 2. Parameter proses yang akan digunakan dalam penelitian ini yaitu yaitu Layer Height (mm), Inffil Speed (mm/s), Speed Perimeters (mm/s), Nozzle temperature (°C), Bed temperature (°C), Infil Density (%), FAN speed (%), flow rate (%), dan infill Overlap(%).
- 3. Filamen yang digunakan dalam proses penelitian ini adalah Filamen ABS (Acrylonitrile Butadiene Styrene).
- 4. Subjek dalam penelitian ini adalah akurasi dimensi (diameter luar,tinggi dan diameter dalam) menggunakan filamen ABS (*Acrylonitrile Butadiene Styrene*).

1.4 Tujuan penelitian

Tujuan dilakukan penelitian ini adalah untuk mendapatkan setting parameter proses yang optimal dalam menghasilkan objek 3D model dengan akurasi dimensi yang paling akurat menggunakan filamen ABS (Acrylonitrile Butadiene Styrene), terhadap diameter luar, tinggi dan diameter dalam.

BAB II

DASAR TEORI

2.1 Mesin 3D Printing

Mesin 3D printer merupakan alat untuk membuat benda tiga dimensi dari file digital. Penciptaan objek cetak 3D dicapai menggunakan proses aditif. Dalam proses pembuatan secara aditif, sebuah objek dibuat dengan meletakkan lapisan tipis secara berurutan sampai objek terbentuk sesuai dengan bentuk yang diinginkan. Masing-masing lapisan ini dapat dilihat sebagai potongan melintang horizontal yang diiris tipis tipis dari objek yang akhirnya membentuk suatu benda 3 dimensi. Prinsip kerja 3D Printing adalah dengan cara menggunakan metode penambahan material dalam membuat produk yang sering disebut proses Additive manufacturing. Material yang digunakan pada proses 3D printing ini di sebut dengan filamen,yang dimana filamen meleleh dan membentuk sebuah susunan benda 3D yang telah didesain.

Dengan teknologi dari printer 3D sebuah perusahaan dapat membuat sebuah *prototype* tanpa harus menghabiskan bahan baku ataupun material. Karena setelah seorang *designer* menggambar objek 3D mereka akan bisa langsung mencetak hasil *design* mereka dengan printer tersebut dan langsung mengetahui kira-kira apa saja kekurangan dari *design* yang telah dibuatnya. Melihat prospek ke depan printer 3D dan perkembangannya, aplikasi printer ini sudah mampu merambah ke segala lini. Saat ini terus dikembangkan bahan filamen yang mencapai titik didih tinggi, dengan kekuatan yang ekstra kuat. Kalau itu sudah tercapai, aplikasinya bisa lebih banyak lagi (Setiawan, 2019).

2.2 Mekanisme Proses 3D Printing

Mekanisme dari proses 3D *printing* secara umum terbagi menjadi 3 tahap proses yaitu :

1. Model Objek 3D

Model objek 3D dapat dibuat dengan menggunakan *software* khusus untuk model desain 3D yang printernya mendukung contohnya seperti *prusa slicer, solidwork*, catia, delkam. Aplikasi ini merupakan aplikasi pembuat sebuah code yang akan di masukan ke printer sehingga printer akan membaca code tersebut sehingga terbentuklah spesimen uji

2. Proses *Printing*

Setelah proses desain selesai maka sudah bisa langsung dicetak menggunakan mesin 3D printing dan proses pencetakan pun dimulai. Waktu yang dibutuhkan untuk proses pencetakan itu tergantung dengan besar nya ukuran model yang akan dicetak.semakin besar benda yang akan di cetak maka waktu akan semakin lama pula,sedangkan semakin kecil benda yang akan di cetak maka semakin cepat juga proses pengeprinan nya.

3. Finishing

Pada tahap ini anda dapat penyempurnaan bagian-bagian kompleks yang bisa jadi disebabkan oleh ukuran yang berbeda dengan yang diinginkan. Teknik tambahan untuk menyempurnakan proses ini dapat pula menggunakan teknik multiple material atau kombinasi warna. (Setiawan, 2019).

2.3 Filamen ABS (Acrylonitrile Butadiene Styrene)

ABS atau *Acrylonitrile Butadiene Styrene* adalah *termoplastik* yang umum yang terbuat dari sumber daya berbasis minyak. Selain itu, memiliki sifat yang lebih keras dan kaku dibandingkan dengan PLA. ABS biasanya digunakan sebagai bemper mobil maupun helm. Salah satu keunggulan ABS adalah memiliki usia pemakaian yang panjang dan tahan temperatur yang tinggi dan kelemahannya adalah lebih sulit untuk digunakan dalam 3D printing karena sifatnya yang keras

dan kaku. ABS juga dibuat dari bahan dasar petroleum sehingga baunya sedikit mengganggu.

Perbedaan dari filamen ABS dan PLA adalah proses pencetakannya, filament ABS lebih mudah terpengaruh oleh banyak faktor yang ada disekitarnya seperti suhu, kecepatan dan juga bahan yang kurang baik akan menimbulkan kejadian *shrinkage*. *Shrinkage* umum terjadi di dalam proses print filament ABS, *shrinkage* membuat benda yang di print menjadi menyusut dan kemudian yang lebih parah lagi bisa membuat benda *printing* terlepas dari meja pembuatannya. Maka dari Itu printer yang dibutuhkan untuk membuat filamen ABS biasanya berbentuk *close chamber* atau tertutup dari udara luar untuk mengurangi proses *shrinkage*.

2.4 Metode Taguchi

Tahun 1940 Metode Taguchi pertama kali diperkenalakan oleh Dr. Genichi Taguchi. Teknik Taguchi adalah penelitian baru yang dimikili bidang teknik dengan tujuan untuk mengelolah Ketahanan sistem dan produk menjadi lebih baik serta tidak memakan biaya dan waktu yang lama. Untuk itu Metode Taguchi akan membuat produk dan sistem yang kuat sehingga tidak mudah terpengaruh oleh beberapa ancaman seperti kekurangan tenaga kerja,bahan baku, alat produksi dan kelemahan pada data. Dengan menggunakan Metode Taguchi sistem dan produk akan mempunyai sifat kokoh dan Tangguh untuk menghadapi gangguan yang buruk dengen itu Meode Taguchi dapat dikatakan sebagai Robust design. (Dian Ridlo Pamuji, 2015).

Metode Taguchi membuat uraian melalui kesimpulan pada sistem lalu memutuskan suatu populasi berlandaskan data yang di dapat dan membedakan nilai akhir perhitungan tersebut dengan penekanan/kekhisusan keluaran yang memuaskan konsumen. Cara Taguchi menyampaikan poin penting pada pengumpulan contoh barang, pengecekan beserta kesimpulannya dan laporan pada data itu digunakan untuk mengarahkan dan mengoptimalkan ketika jalannya produksi. Memastikan kegiatan produksi dalam keadaan normal dan barang yang di keluarkan dalam daerah standar (Adherisma, 2018).

Metode Taguchi memperkenalkan pendekatan dengan menggunakan pendekatan desain eksperimen yang berguna untuk :

- 1. Merancang suatu produk/merancang proses sehingga kualitasnya kokoh terhadap kondisi lingkungan.
- 2. Merancang/mengembangkan produk sehingga kualitasnya kokoh terhadap variasi komponen.
- 3. Meminimalkan variasi di sekitar target.

Metode Taguchi mempunyai beberapa keunggulan yaitu desain eksperimen Taguchi lebih efisien karena memungkinkan untuk melaksanakan penelitian yang melibatkan banyak faktor. Desain eksperimen Taguchi memiliki suatu proses yang menghasilkan produk konsisten dan kokoh terhadap faktor yang sulit dikontrol.

Metode Taguchi juga menghasilkan faktor yang mengenai respon yang optimal. Metode Taguchi juga mempunyai kekurangan dari metode yang lain diantaranya yaitu metode ini mempunyai struktur yang kompleks. Untuk mengatasi kekurangan itu diperlukan rancangan percobaan yang lebih hati-hati dan sesuai dengan tujuan penelitian.

Desain eksperimen yaitu serangkaian pengujian atau percobaan dengan mengendalikan beberapa faktor untuk menghasilkan percobaan/pengujian yang terukur. Desain eksperimen juga merupakan proses mengevaluasi dua faktor atau lebih secara serentak terhadap kemampuannya untuk mempengaruhi rata-rata atau variabilitas hasil gabungan dari karakteristik produk atau proses tertentu. Demi memperoleh secara efisien, variabel dan level di bentuk beragam dan berikutnya nilai dari kumpulan percobaan khusus dilihat, lalu kumpulan hasil selengkapnya dapat dianalisis. Hasil analisis ini kemudian digunakan untuk menentukan faktorfaktor yang berpengaruh dan juga tindakan untuk membuat perbaikan lebih lanjut.

Pada umumnya desain eksperimen taguchi ini memeiliki beberapa tahap utama yang mencakup semua pendekatan eksperimen. Tiga tahap utama tersebut adalah :

1. Tahap perencanaan

Tahap perencanaan adalah tahap terpenting yang ada pada eksperimen, peneliti dituntut untuk mempelajari eksperimen yang pernah diteliti sebelumnya. Ada beberapa langkah yang diusulkan pada tahapan untuk melakukan eksperimen secara sistematis, yaitu:

a. Menyatakan permasalahan atau Perumusan permasalahan

Mendefinisikan dengan jelas permasalahn yang akan dilakukan untuk kemudian dilakukan usaha untuk perbaikan kualitas.

b. Tujuan penelitian

Mengidentifikasikan karakteristik kualitas dan tingkat performa dari eksperimen.

c. Menentukan metode

Menentukan parameter apa yang akan di pakai dan parameter apa yang ingin diteliti kemudian bagaimana cara mengukurnya dan alat ukur apa saja yang akan digunakan untuk pengukuran.

d. Indentifikasi variable tak bebas

Variabel respon memiliki nilai yang tergantung pada faktor lain yang disebut variabel bebas. Saat merencanakan eksperimen variable respon yang akan diselidiki harus dipilih dan didefinisikan dengan jelas.

e. Identifikasi Faktor (variabel bebas)

Variabel bebas adalah variabel yang perubahannya tidak tergantung pada variabel lain. Pada langkah ini, faktor-faktor yang akan dipelajari pengaruhnya terhadap respon yang bersangkutan. Dalam satu percobaan, tidak semua faktor yang dianggap mempengaruhi respon harus diselidiki. Berkat ini, eksperimen dapat dilaksanakan secara efektif dan efesien.

f. Pemisah faktor kontrol dan faktor gangguan

Faktor yang diamati dapat dibagi menjadi faktor pengoontrol dan faktor pengganggu. Dalam eksperimen Taguchi, kedua faktor ini harus didefinisikan dengan jelas karena efek antara kedua faktor tersebut berbeda. Faktor kontrol adalah nilai yang dapat dikontrol sedangkan faktor pengganggu adalah faktor yang tidak dapat mengotrol nilainnya.

g. Penentuan jumlah dan nilai level faktor

Menentukan jumlah level sangat mempengaruhi ketelitian hasil dan biaya pelaksanaan eksperimen. Semakin banyak level yang diteliti maka hasil eksperimen yang diperoleh akan semakin akurat, tetapi biaya yang harus dikeluarkan akan semakin besar.

h. Perhitungan derajat kebebasan

Derajat kebebasan adalah sebuah rangkain untuk menggambarkan seberapa besar percobaan yang akan dilakukan dan seberapa banyak informasi yang dapat diberikan oleh percobaan tersebut. Derajat kebebasan dari faktor dan level $(v_{\rm fl})$ dapat ditentukan dengan menggunakan persamaan sebagai berikut :

$$v_{\rm fl} = \text{Jumlah level faktor} - 1$$
 (1)

i. Pemilihan matrik orthogonal

Pemilihan matrik orthogonal yaitu untuk menentukan sebuah jumlah derajat kebebasan dari faktor dan jumlah level faktor. Matrik orthogonal memiliki kemampuan untuk mengevaluasi sejumlah faktor dengan jumlah eksperimen yang minimum.

Matrik oertogonal L₂₇ adalah salah satu matrik orthogonal standar dengan 3 level dengan 26 derajat kebebasan.

2. Tahap pelaksanaan eksperimen

Dua hal tahapan pelaksanaan, yaitu penentuan jumlah replikasi dan randomisasi pelaksanaan eksperimen.

a. Jumlah replikasi

Replikasi yaitu pengulangan kembali dengan perlakuan sama persis dan pada posisi, kondisi yang sama dalam sebuah eksperimen untuk mendapatkan ketelitian lebih baik, meminimalkan tingkat kesalahan yang akan terjadi.

b. Randomisasi

Pengaruh terhadap faktor yang tidak diinginkan atau tidak dapat dikendalikan yang terdapat di eksperimen tersebut. Tujuan dilakukan Randomisasi ialah untuk menyebarkan pengaruh dari faktor-faktor yang tidak dapat dikendalikan pada semua unit eksperimen, serta memberikan kesempatan

yang sama pada semua unit eksperimen untuk menerima suatu perlakuan, sehingga adat kehomogenan dari setiap perlakuan yang sama.

3. Tahap analisis

Pada tahap analisis pengambilan data dan pengolahan data akan dilakukan yang meliputi tahap pengumpulan data, pengaturan data, perhitungan serta penyajian data dalam suatu tampilan tertentu yang sesuai dengan rancangan yang di pakai. S/N Ratio (*Signal to Noise Ratio*) merupakan salah satu tahap analisis.

Signal to Noise Ratio (SNR) dalam metode taguchi digunakan untuk mengetahui nilai level factor yang berpengaruh dan optimal bagi karakteristik kualitas dari hasil eksperimen. Karakteristik kualitas pada SNR terdiri dari :

a. Smaller is Better

Smaller is Better atau semakin kecil semakin baik adalah karakteristik kualitas dengan batas nilai nol dan non-negatif, dimana nilai yang mendekati nol merupakan nilai yang diinginkan.

$$S/N = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} y_i^2 \right]$$
 (2)

Dimana:

n = jumlah pengulangan

y = data dari percobaan

b. Nominal is Best

Nominal is Best atau tertuju pada nilai tertentu adalah karakteristik kualitas dengan nilai tidak nol dan terbatas, dimana suatu nilai yang mendekati nilai yang telah ditentukan adalah yang terbaik.

$$S/N = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} \frac{(y_1 - \bar{y})^2}{n} \right]$$
 (3)

Dimana:

n = jumlah pengulangan

y = data dari percobaan

c. Large is Better

Large is Better atau semakin besar semakin baik adalah karakteristik kualitas dengan rentang nilai yang tak terbatas dan non-negatif, dimana nilai semakin besar merupakan nilai yang diinginkan.

$$S/N = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} \frac{(1/y_1^2)}{n} \right]$$
 (4)

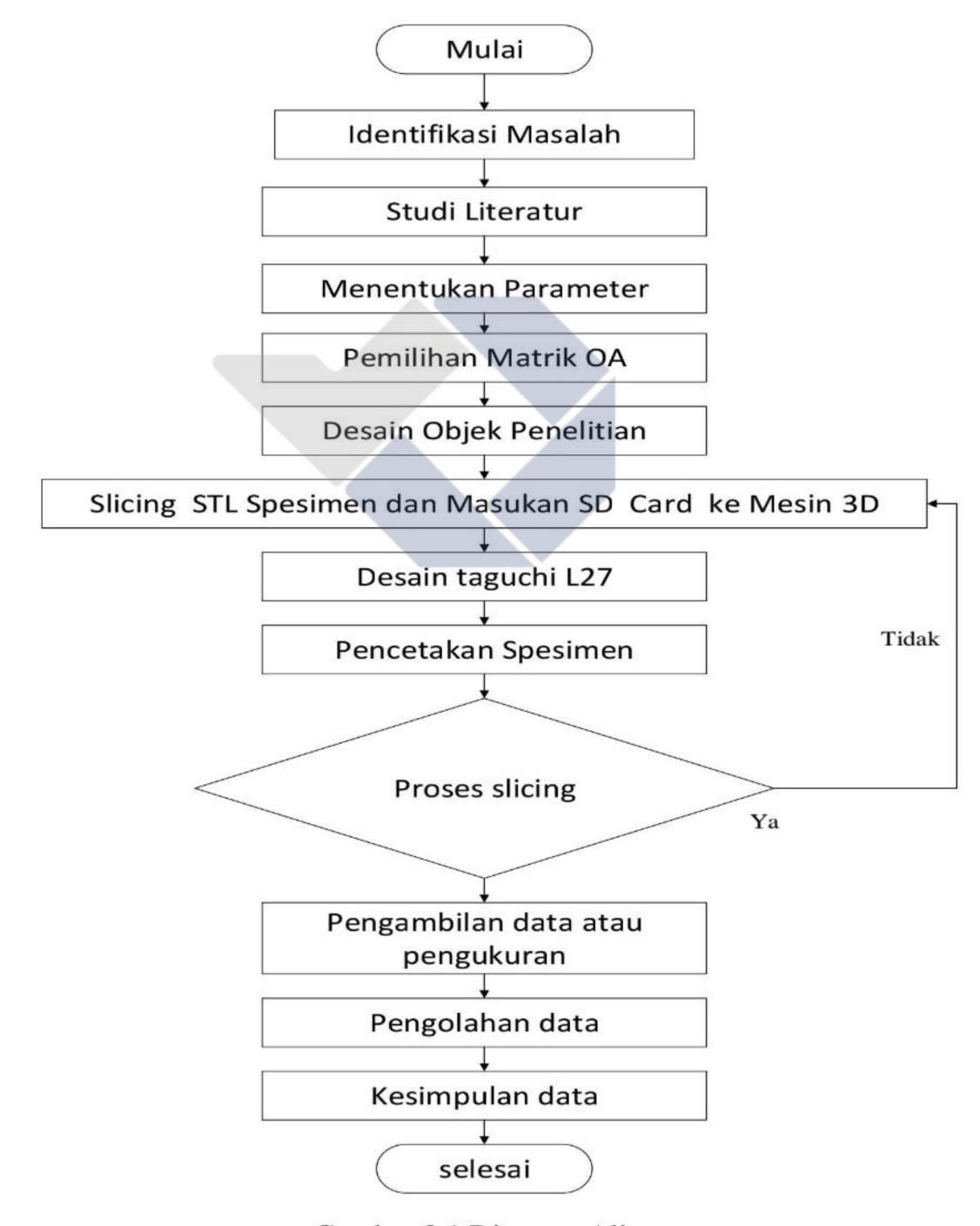
Dimana:

n = jumlah pengulangan

y = data dari percobaan

2.5 Analisis Variansi (ANAVA)

Analisis Variasi yaitu menerapkan sistem data yang telah di atur pada penelitian menurut Statistika dengan tujuan dapat menentukan keterlibatan faktor prediksi model. Kajian Variasi adalah teknik menganalisis melalui penjabaran segala macam bagian yang diteliti. Matriks Orthogonal dikerjakan melalui perhitungan jumlah kuadrat pada tiap kolom. Analisis Variansi Dua arah terbentuk kerena beberapa Variabel dan tahapan atau lebih. (Dian Ridlo Pamuji, 2015).


0.40

BAB III

METODELOGI PENELITIAN

3.1 Diagram Alir

Tahapan proses yang akan dilakukan dalam penelitian ini digambarkan dalam diagram alir pada gambar 3.1.

Gambar 3.1 Diagram Alir

3.2 Objek Penelitian

Objek penelitian dilakukan pada mesin 3D printer Anet Et4 dengan *printing* Area XYZ 220 mm x 220 mm x 250 mm dengan menggunakan *nozzle* berukuran 0,4 mm. Material yang digunakan fillamen ABS dengan diameter 1,75 mm warna merah. Desain objek dibuat menggunakan sofware Autodesk fusion 360.

3.3 Tempat Penelitian dan Pengujian

Proses pengeprinan 3D *printing* pada filamen ABS menggunakan Mesin 3D printer merek Anet ET4 dilakukan di Laboratorium Mekanik Politeknik Manufaktur Negeri Bangka Belitung.

3.4 Bahan dan Alat yang Digunakan Dalam Penelitian

3.4.1 Bahan Penelitian

Penelitian ini menggunakan material termoplastik yang berbentuk filamen. Adapun bahan yang digunakan pada filamen ini adalah *Acrylonitrile Butadiene Styrene* (ABS) dengan diameter filamen sebesar 1,75 mm dengan temperatur pencetakan sebesar 230-250°C. Filamen ABS ditunjukan pada gambar 3.2.

Gambar 3.2 Acrylonitrile Butadiene Styrene (ABS)

3.4.2 Alat Penelitian

Pada penelitian ini alat yang digunakan adalah sebagai berikut:

A. Mesin 3D Printer Anet ET4

Pada penelitian ini mesin yang digunakan untuk mencetak spesimen yaitu mesin 3D Printer Anet ET4 seperti yang ditunjukan pada gambar Mesin 3D Printer Anet ET4 yang digunakan pada penelitian memiliki spesifikasi yang ditunjukan pada table 3.1.

Tabel 3.1 Spesifikasi Mesin 3D Printer Anet ET4

	Product Spesification
Product Dimension	440*340*480 mm
Screen	2.8 inch Color Touch Screen
Nozzle Diameter	0.4 mm
Power Supply	110V/220V AC 240W
Slicing Software	Cura, Repetier, Simplify3D
Data Input Format	STL, OBJ, JPG
Data Output Format	Gcode
Operating System	Windows, MAC
Language	English/Chinese
Connectors	USB/TF Card
Main Frame	All Metal Frame
Net Weight	7.2±0.2kg
	Printing Spesification
Build Volume	220*220*250mm
Printing Precision	±0.1mm
Printing Speed	≤150mm/s
Layer Thickness	0.1-0.3mm
	Working Condition
Temperature ruangan	0-40°C
Humidity	5-80%
R	ecommended Filament
Filament Diameter	1.75mm
Printing Material	PLA, ABS, HIPS etc.

Gambar 3.3 Mesin 3D Printer Anet ET4

B. Magnetic bed

Magnetic Bed digunakan sebagai bed 3D printing dan berfungsi sebagai dasar tempat pencatakan spesimen, masking tape memiliki sifat tahan panas.

C. Laptop

Penelitian ini menggunakan laptop merk ACER Z476 yang digunakan untuk membuat model 3D benda uji, melakukan *slicing* model benda, dan mengubah data model menjadi G-code agar dapat dibaca oleh mesin 3D printer yang di gunakan dalam penelitian ini.

D. MicroSD merk sandisk ultra gen10

MicroSD digunakan untuk menyimpan data G-code yang didapatkan dari laptop yang nantinya G-code tersebut akan digunakan untuk menjalankan mesin sesuai dengan perintah. Pada penelitian ini merk MicroSD yang digunakan adalah Sandisk dengan varian Sandisk Ultra gen 10 dengan kapasitas sebesar 32 Gb.

Gambar 3.4 MicroSD Sandisk Ultra Gen10

E. Software Autodesk fusion 360

Perangkat lunak yang digunakan dalam pembuatan model CAD pada mesin 3D Printing di penelitian ini adalah AutoDesk Fusion 360.

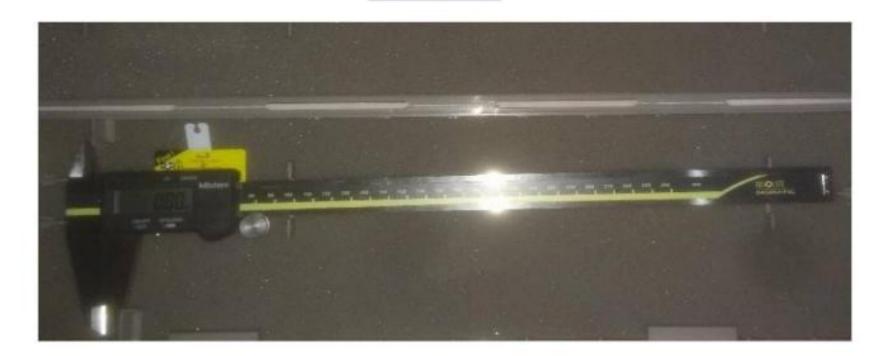
Gambar 3.5 Autodesk Fusion 360

F. Software Prusaslicer

Perangkat lunak Prusaslicer digunakan untuk melakukan *slicing* pada model yang telah dibuat dan digunakan G-Code pada mesin 3D printing

Gambar 3.6 Prusaslicer

G. Micrometer Digital


Alat ukur yang akan di gunakan dalam penelitian ini adalah Micrometer Digital untuk pengukuran Diameter luar.

Gambar 3.7 Micrometer Digital

H. Jangka Sorong Digital

Alat ukur yang akan digunakan yaitu Jangka Sorong Digital untuk Mengukur Diameter dalam dan tinggi spesimen.

Gambar 3.8 Jangka Sorong Digital

3.5 Proses Penelitian

3.5.1 Mengidentifikasi Masalah

Tahap ini merupakan tahap untuk mengidentifikasi masalah yang muncul pada peneliti terdahulu agar bisa mencari permasalahan peneliti tersebut dimana tahap ini merupakan langkah awal untuk memulai sebuah penelitian.

3.5.2 Studi Literatur

Studi literatur merupakan bagian dari kegiatan mengumpulkan berbagai teori yang mendukung kepada penelitian yang akan di lakukan.pengumpulan teori bisa dari jurnal dan buku.

3.5.3 Menentukan parameter

Setelah persiapan selesai dilakukan, kemudian akan dilanjutkan dengan menentukan parameter proses yang akan digunakan pada penelitian.

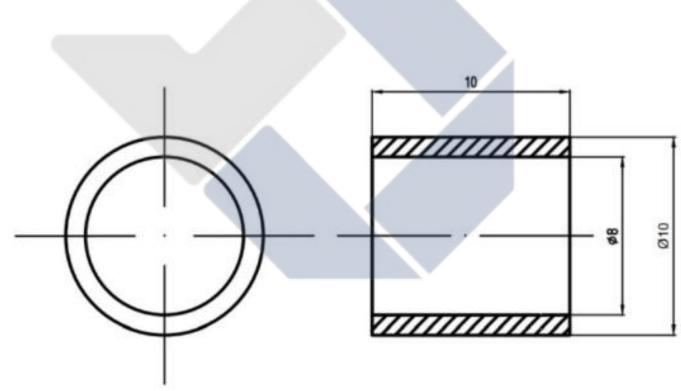
Tabel 3.2 Nilai Parameter proses pencetakan filamen ABS

Parameter	Level			
S==	1	2	3	
(A) Layer Height(mm)	0,2	0,24	0,28	
(B) Infill Speed(mm/s)	40	45	50	
(C)Speed Perimeters(mm/s)	40	45	50	
(D) Nozzle Temperature (°C)	240	245	250	
(E) Bed Temperature(°C)	90	95	100	
(F)Infill Density (%)	20	25	30	
(G) FAN Speed (%)	5	10	15	
(H) Flow Rate (%)	90	95	100	
(I) Infill Overlap(%)	5	10	15	

3.5.4 Pemilihan Matrik Ortogonal

Matriks ortogonal yang akan dilakukan harus mempunyai derajat kebebasan yang sama atau lebih besar dari pada total derajat kebebasan parameter proses dan level faktor yang telah ditetapkan dan ditunjukkan pada Tabel 3.3.

Tabel 3.3 Total Derajat Kebebasan Faktor dan Level


Parameter Proses	Jumlah Level (L)	$v_{\rm fl} = (L-1)$		
Layer Height(mm)	3	2		
Infill Speed(mm/s)	3	2		
Speed Perimeters(mm/s)	3	2		
NozzleTemperature(°C)	3	2		
Bed Temperature(°C)	3	2		

Parameter Proses	Jumlah Level (L)	$v_{\rm fl} = (L-1)$		
Infill Density (%)	3	2		
FAN Speed (%)	3	2		
Flow Rate (%)	3	2		
Infill Overlap(%)	3	2		
Total derajat kebebasan		18		

Pada Tabel 3.3 diketahui bahwa total derajat kebebasan dari parameter proses dan level faktor yang digunakan adalah 18 DOF. Maka dari itu pilihan yang tersedia untuk matrik ortoghonal dengan derajat kebebasan 18 adalah $L_{27}(3^9)$ yang memenuhi syarat untuk dijadikan rancangan percobaan. Rancangan percobaan matrik orthogonal L_{27} memiliki 9 faktor, 3 level, dan 27 baris.

3.5.5 Desain Objek

Bentuk dan dimensi objek cetak di desain menggunakan *Software* Autodesk Fusion 360.

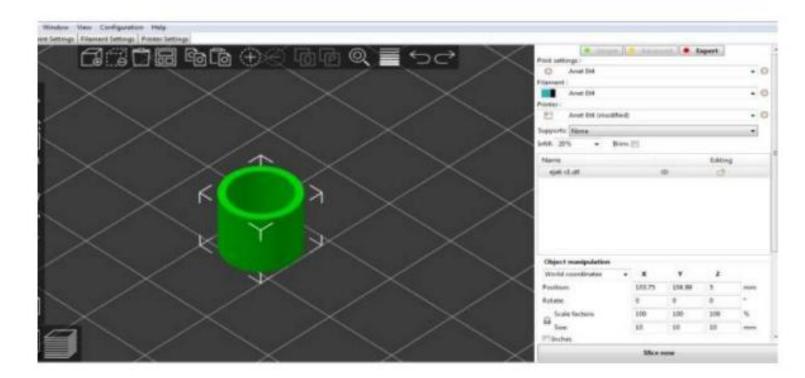
Gambar 3.9 Desain Dimensi Objek Cetak

3.5.6 Slicing STL Spesimen dan Masukan SD Card ke Mesin 3D printing

Selanjutnya file di olah pada software sliccing prusaslicer dan masukan SD Card untuk mengambil G *Code*, dimana tujuan dari proses ini adalah agar desain yang sudah disiapkan dapat dibuat dan di proses oleh mesin 3D *printing*.

3.5.7 Desain Taguchi L27 OA

Pada tahap ini akan dilakukan desain parameter cetak, bertujuan untuk mengetahui parameter mana yang lebih baik, parameter akan dicetak sesuai pada tabel 3.4.


Tabel 3.4 Desain Faktorial L27

Exp	A	В	C	D	E	F	G	H	I
1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	2	2	2	2	2
3	1	1	1	1	3	3	3	3	3
4	1	2	2	2	1	1	1	2	2
5	1	2	2	2	2	2	2	3	3
6	1	2	2	2	3	3	3	1	1
7	1	3	3	3	1	1	1	3	3
8	1	3	3	3	2	2	2	1	1
9	1	3	3	3	3	3	3	2	2
10	2	1	2	3	1	2	3	1	2
11	2	1	2	3	2	3	1	2	3
12	2	1	2	3	3	1	2	3	1
13	2	2	3	1	1	2	3	2	3
14	2	2	3	1	2	3	1	3	1
15	2	2	3	1	3	1	2	1	2
16	2	3	1	2	1	2	3	3	1
17	2	3	1	2	2	3	1	1	2
18	2	3	1	2	3	1	2	2	3
19	3	1	3	2	1	3	2	1	3
20	3	1	3	2	2	1	3	2	1
21	3	1	3	2	3	2	1	3	2
22	3	2	1	3	1	3	2	2	1
23	3	2	1	3	2	1	3	3	2
24	3	2	1	3	3	2	1	1	3
25	3	3	2	1	1	3	2	3	2
26	3	3	2	1	2	1	3	1	3
27	3	3	2	1	3	2	1	2	1

Eksperimen akan dilakukan berdasarkan Tabel 3.4 kemudian akan diubah menjadi parameter proses dan nilai level akan di ambil pada tabel 3.2 nilai tiap parameter proses tersebut nantinya akan diinput ke *software slicing* untuk mendapatkan sebuah *G-code* proses pencetakan. Kemudian *G-code* ini akan dimasukan ke dalam kartu memori untuk menyimpan *G-code* setelah melakukan penyimpanan kemudian kartu memori tersebut dimasukkan ke mesin 3D *Printer*. lalu mulailah sebuah pencetakan dimana penyetakan dilakukan sebanyak dua puluh tujuh pencetakan dimana setiap eksperimen akan dilakukan tiga kali replikasi.

3.5.8 Pembentukan Spesimen

Pada tahap ini peneliti akan melakukan pencetakan spesimen yang telah di disain.

Gambar 3.10 Pembentukan Spesimen

Hasil cetakan akan dilakukan pengukuran menggunakan Micrometer Digital dan Jangka Sorong Digital, dimana untuk mengukur Diameter luar menggunakan Micrometer Digital dan untuk pengukuran Diameter dalam dan tinggi menggunakan Jangka Sorong Digital.nilai rata-rata hasil pengujian akan dimasukan ke *software* analisis data untuk diolah.

3.5.9 Pengolahan data

Tahapan terakhir pada penelitian ini yaitu Pengolahan data, dimana pada tahapan ini semua parameter yang telah diuji dan objek 3D yang dihasilkan akan disampaikan pada penelitian ini, untuk mengetahui parameter mana yang paling optimal untuk menghasikan produk yang paling baik.

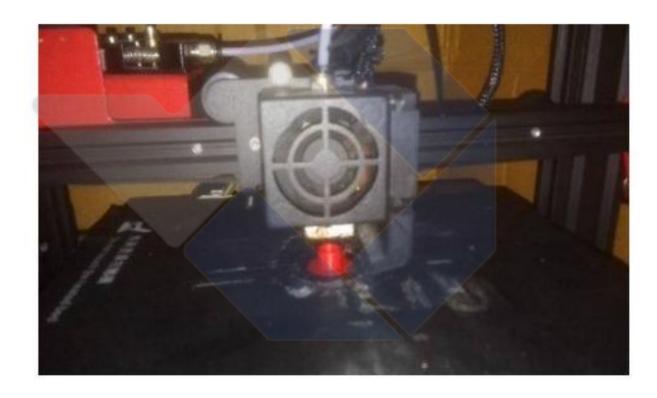
3.5.10 Analisis Data

Analisis data menggunakan *Software* analisis dilakukan untuk mengetahui parameter mana yang paling optimal nilainya pengaruh parameter prosesnya. Data yang didapatakan ditampilkan dalam tabel respons untuk mempermudah pengolahan data. Tujuan dari mencari pengaruh parameter pada 3D *Printing* untuk mengetahui parameter mana yang paling optimal pada filamen ABS (*Acrylonitrile Butadiene Styrene*).

BAB IV

HASIL DAN PEMBAHASAN

4.1 Pengambilan Data Hasil Percobaan

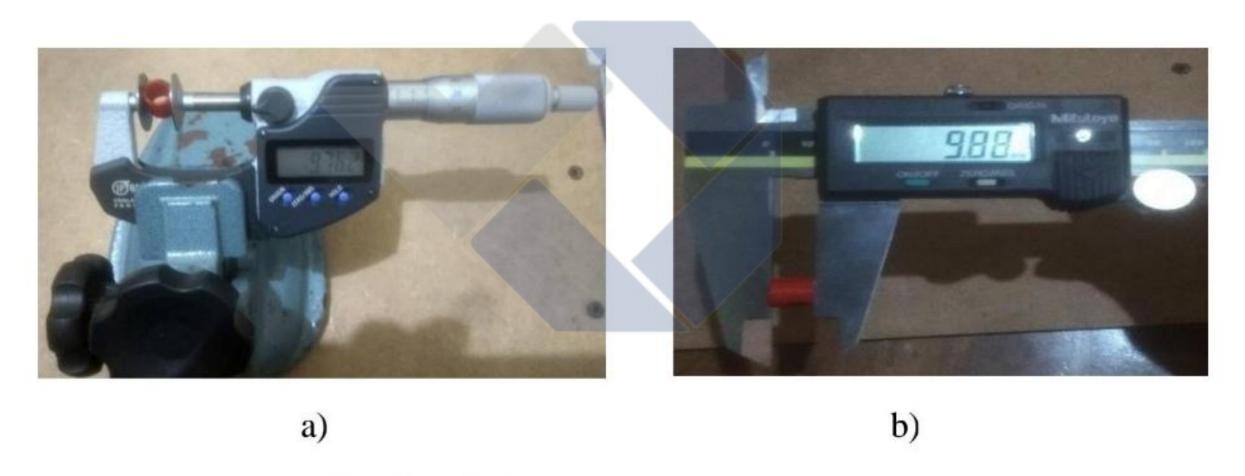

Pengambilan data penelitian ini dilakukan denga cara mencetak objek yang akan di uji dengan mengkobinasikan parameter proses pada mesin 3D *printing* FDM. Adapun parameter yang akan di kombinasikan yaitu *Layer Height* (mm), *Infill Speed* (mm/s), *Speed Perimeters* (mm/s), *Nozzle Temperature* (°C), *Bed Temperature* (°C), *Infill Density* (%), *Fan Speed* (%), *Flow Rate* (%), dan *Infill Overlap*(%). Pada tabel 4.1 menunjukan hasil desain faktorial *Taguchi* L27 OA. percobaan akan dilakukan sebanyak 27 (dua puluh tujuh) percobaan dengan 9 (sembilan) parameter dimana setiap percobaan akan dilakukan pengulangan atau replikasi sebanyak 3 kali pengulangan. Pada tahap ini, setelah memiliki hasil pengujian, data tersebut diolah menggunakan *software* analisis untuk memperoleh parameter yang optimal terhadap akuransi dimensi.

Tabel 4.1 Desain Faktorial penelitian L27 OA

NO EXP	Layer Height (mm)	Infill Speed (mm/s)	Speed Perimeters (mm/s)	Noz zle (°C)	Bed (°C)	Infill Density (%)	FAN Speed (%)	Flow Rate (%)	Infill Overlap (%)
1	0,2	40	40	240	90	20	5	90	5
2	0,2	40	40	240	95	25	10	95	10
3	0,2	40	40	240	100	30	15	100	15
4	0,2	45	45	245	90	20	5	95	10
5	0,2	45	45	245	95	25	10	100	15
6	0,2	45	45	245	100	30	15	90	5
7	0,2	50	50	250	90	20	5	100	15
8	0,2	50	50	250	95	25	10	90	5
9	0,2	50	50	250	100	30	15	95	10
10	0,24	40	45	250	90	25	15	90	10
11	0,24	40	45	250	95	30	5	95	15
12	0,24	40	45	250	100	20	10	100	5
13	0,24	45	50	240	90	25	15	95	15
14	0,24	45	50	240	95	30	5	100	5
15	0,24	45	50	240	100	20	10	90	10
16	0,24	50	40	245	90	25	15	100	5
17	0,24	50	40	245	95	30	5	90	10
NO EXP	Layer Height (mm)	Infill Speed (mm/s)	Speed Perimeters (mm/s)	Noz zle (°C)	Bed (°C)	Infill Density (%)	FAN Speed (%)	Flow Rate (%)	Infill Overlap (%)

18	0,24	50	40	245	100	20	10	95	15
19	0,28	40	50	245	90	30	10	90	15
20	0,28	40	50	245	95	20	15	95	5
21	0,28	40	50	245	100	25	5	100	10
22	0,28	45	40	250	90	30	10	95	5
23	0,28	45	40	250	95	20	15	100	10
24	0,28	45	40	250	100	25	5	90	15
25	0,28	50	45	240	90	30	10	100	10
26	0,28	50	45	240	95	20	15	90	15
27	0,28	50	45	240	100	25	5	95	5

Tabel 4.1 menunjukan bahwa nilai tiap parameter proses exsperimen diinput ke *software slicing* untuk mendapatkan *G-code* proses pencetakan. Kemudian *G-code* ini dimasukan ke dalam mesin 3D printing untuk melakukan proses pencetakan.proses pencetakan spesimen ditunjukan pada Gambar 4.1.


Gambar 4.1 proses pencetakan spesimen

Hasil dari proses pencetakan spesimen ini dapat di tunjukan pada gambar 4.2 dimana ada 27 (dua puluh tujuh) eksperimen dengan 3 (tiga) kali replikasi sehingga diperoleh 81 spesimen uji akuransi dimensi.

Gambar 4.2 Spesimen Hasil Pencetakan

Hasil dari pencetakan spesimen ini selanjutnya akan dilakukan proses pengukuruan akuransi dimensi dengan diameter 10 mm, tinggi 10 mm, dan diameter dalam 8 mm. Proses pengukuran akuransi dimensi spesimen ini akan ditunjukan pada gambar 4.3.

Gambar 4.3Proses Pengukuran Spesimen

a) Pengukuran diameter luar b) pengukuran diameter dalam dan tinggi

Setelah melakukan pengukuran pada spesimen sehingga mendapatka nilai dari hasil pengukuran untuk diameter luar, tinggi dan diameter dalam spesimen yang akan di tunjukan pada tabel-tabel di bawah ini.

Tabel 4.2 Hasil Pengukuran Diameter Luar

	DIAMETER LUAR								
No Exp	Data Awal	Replikasi 1	Replikasi 2	Rata-Rata (mm)	Deviasi Terhadap Ø10 (mm)				
1	9,750	9,790	9,790	9,777	0,223				
2	9,816	9,760	9,858	9,811	0,189				
3	9,805	9,985	10,038	9,943	0,057				

		D	IAMETER LUAF	3	
No Exp	Data Awal	Replikasi 1	Replikasi 2	Rata-Rata (mm)	Deviasi Terhadap Ø10 (mm)
4	10,073	10,035	10,033	10,047	-0,047
5	9,907	9,972	9,981	9,953	0,047
6	9,995	9,945	9,984	9,975	0,025
7	9,935	9,928	9,896	9,920	0,080
8	9,918	9,912	9,904	9,911	0,089
9	9,954	9,906	9,932	9,931	0,069
10	9,921	9,911	9,951	9,928	0,072
11	9,958	9,888	9,872	9,906	0,094
12	9,942	9,928	9,903	9,924	0,076
13	9,910	9,904	9,963	9,926	0,074
14	9,909	9,934	9,881	9,908	0,092
15	9,873	9,896	9,879	9,883	0,117
16	9,897	9,896	9,891	9,895	0,105
17	9,870	9,849	9,829	9,849	0,151
18	9,866	9,861	9,848	9,858	0,142
19	9,804	9,866	9,834	9,835	0,165
20	9,831	9,846	9,875	9,851	0,149
21	9,786	9,807	9,796	9,796	0,204
22	9,926	9,835	9,865	9,875	0,125
23	9,806	9,850	9,892	9,849	0,151
24	9,815	9,841	9,856	9,837	0,163
25	9,891	9,917	9,921	9,910	0,090
26	9,917	9,930	9,920	9,922	0,078
27	9,931	9,922	9,960	9,938	0,062

Tabel 4.3 Hasil Pengukuran Tinggi

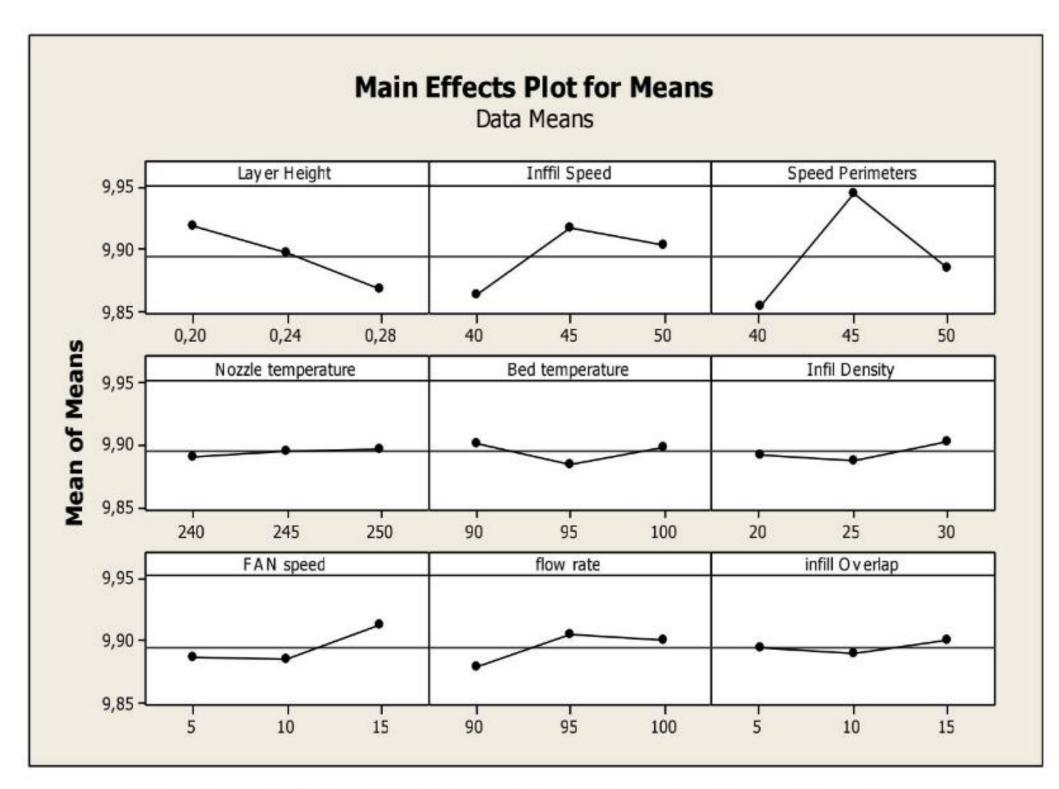
Tinggi								
No Exp	Data Awal	Replikasi 1	Replikasi 2	Rata-Rata (mm)	Deviasi Terhadap Ø10 (mm)			
1	9,953	9,953	9,913	9,940	0,060			
2	9,920	9,900	9,957	9,926	0,074			
3	9,880	9,917	9,953	9,917	0,083			
4	9,957	10,000	10,003	9,987	0,013			
5	9,967	9,960	9,967	9,964	0,036			
6	9,940	9,957	9,997	9,964	0,036			
7	9,967	9,987	9,977	9,977	0,023			
8	10,010	9,957	9,973	9,980	0,020			
9	9,960	9,953	10,013	9,976	0,024			
10	9,997	10,040	9,987	10,008	-0,008			
11	10,020	10,030	9,933	9,994	0,006			

			Tinggi		
No Exp	Data Awal	Replikasi 1	Replikasi 2	Rata-Rata (mm)	Deviasi Terhadap Ø10 (mm)
12	9,987	9,977	9,943	9,969	0,031
13	10,043	9,960	9,997	10,000	0,000
14	9,980	9,997	10,030	10,002	-0,002
15	10,010	10,047	9,963	10,007	-0,007
16	10,017	10,000	9,993	10,003	-0,003
17	10,000	9,980	10,000	9,993	0,007
18	10,003	10,023	9,967	9,998	0,002
19	9,963	9,947	9,920	9,943	0,057
20	9,937	9,947	9,950	9,944	0,056
21	9,973	9,913	9,983	9,957	0,043
22	9,977	9,930	9,960	9,956	0,044
23	9,883	9,913	9,960	9,919	0,081
24	9,897	9,930	9,917	9,914	0,086
25	9,950	9,970	9,947	9,956	0,044
26	9,990	9,947	9,967	9,968	0,032
27	9,910	9,940	9,900	9,917	0,083

Tabel 4.4 Hasil Pengukuran Diameter Dalam

		I	Diameter Dalam		
No Exp	Data Awal	Replikasi 1	Replikasi 2	Rata-Rata (mm)	Deviasi Terhadap Ø8 (mm)
1	7,800	7,670	7,700	7,723	0,277
2	7,637	7,710	7,690	7,679	0,321
3	7,623	7,570	7,670	7,621	0,379
4	7,710	7,613	7,550	7,624	0,376
5	7,653	7,607	7,660	7,640	0,360
6	7,667	7,720	7,690	7,692	0,308
7	7,670	7,680	7,657	7,669	0,331
8	7,700	7,697	7,683	7,693	0,307
9	7,667	7,613	7,673	7,651	0,349
10	7,670	7,690	7,677	7,679	0,321
11	7,647	7,630	7,630	7,636	0,364
12	7,623	7,570	7,620	7,604	0,396
13	7,727	7,813	7,853	7,798	0,202
14	7,833	7,720	7,813	7,789	0,211
15	7,823	7,813	7,787	7,808	0,192
16	7,727	7,767	7,737	7,743	0,257
17	7,707	7,693	7,647	7,682	0,318
18	7,717	7,740	7,723	7,727	0,273
19	7,743	7,783	7,730	7,752	0,248

	Diameter Dalam							
No Exp	Data Awal	Replikasi 1	Replikasi 2	Rata-Rata (mm)	Deviasi Terhadap Ø8 (mm)			
20	7,773	7,803	7,753	7,777	0,223			
21	7,693	7,780	7,750	7,741	0,259			
22	7,767	7,717	7,733	7,739	0,261			
23	7,733	7,690	7,747	7,723	0,277			
24	7,687	7,757	7,757	7,733	0,267			
25	7,703	7,807	7,800	7,770	0,230			
26	7,790	7,693	7,713	7,732	0,268			
27	7,780	7,767	7,757	7,768	0,232			


Setelah medapatkan nilai rata-rata pada tabel diatas akan dimasukkan ke dalam software analisis untuk diolah.

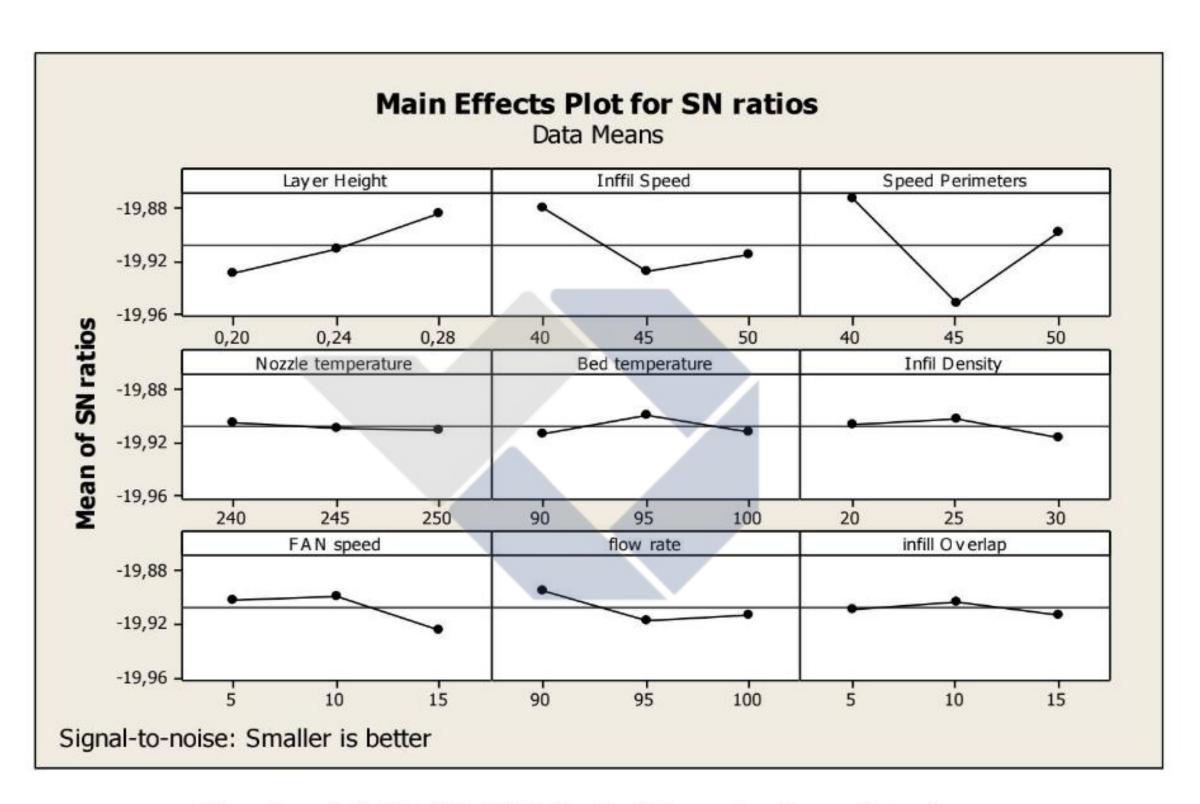
4.2 Pengolahan Data Hasil Eksperimen

Pengolahan data hasil pengujian dilakukan untuk mendapatkan pengaturan parameter proses yang optimal dan berpengaruh terhadap hasil uji akurasi dimensi dengan menggunakan metode *taguchi*. Pengolahan data ini akan menggunakan *software* analisis, dimana nilai pada Tabel 4.2 Tabel 4.3 dan Tabel 4.4 data hasil pengujian tersebut dimasukkan ke dalam *software* analisis untuk mendapatkan nilai hasil respon *Mean Plot* dan S/N Ratio dengan kualitas "*Smaller is Better*" kerena semakin kecil semakin baik, dimana nilai yang memiliki selisih paling kecil pada ukuran spesimen maka akuransi yang dihasilkan semakin baik.

4.2.1 Mean Plot dan S/N Ratio "Smaller is better" Diameter Luar Spesimen

Hasil respon *Mean Plot* dari *sofware* analisis ditunjukan pada pada gambar 4.4 dan Tabel 4.5. serta hasil S/N *Ratio* "*Smaller is better*" ditunjukan pada gambar 4.5 dan tabel 4.6.

Gambar 4.4 Grafik Mean Plot Diameter Luar Spesimen


Berdasarkan gambar 4.4 didapatkan bahwa Grafik *Mean Plot* terhadap akurasi dimensi yang paling berpengaruh yaitu *speed perimeters, Infill Speed, Layer Height, Fan Speed, Flow Rate, Bed Temperature, Infill Density, Infill Overlap , Nozzle Temperatur.*

Tabel 4.5 Hasil Mean Plot Diameter Luar Spesimen

	Layer	Infil	l Speed	Nozzle	Bed	Infill
Level	Height	Speed	Perimeters	Temperature	Temperature	Density
1	9,919	9,863	9,855	9,891	9,901	9,892
2	9,897	9,917	9,945	9,895	9,885	9,888
3	9,868	9,904	9,884	9,898	9,898	9,903
Delta	0,050	0,054	0,090	0,007	0,017	0,015
Rank	3	2	1	9	6	7

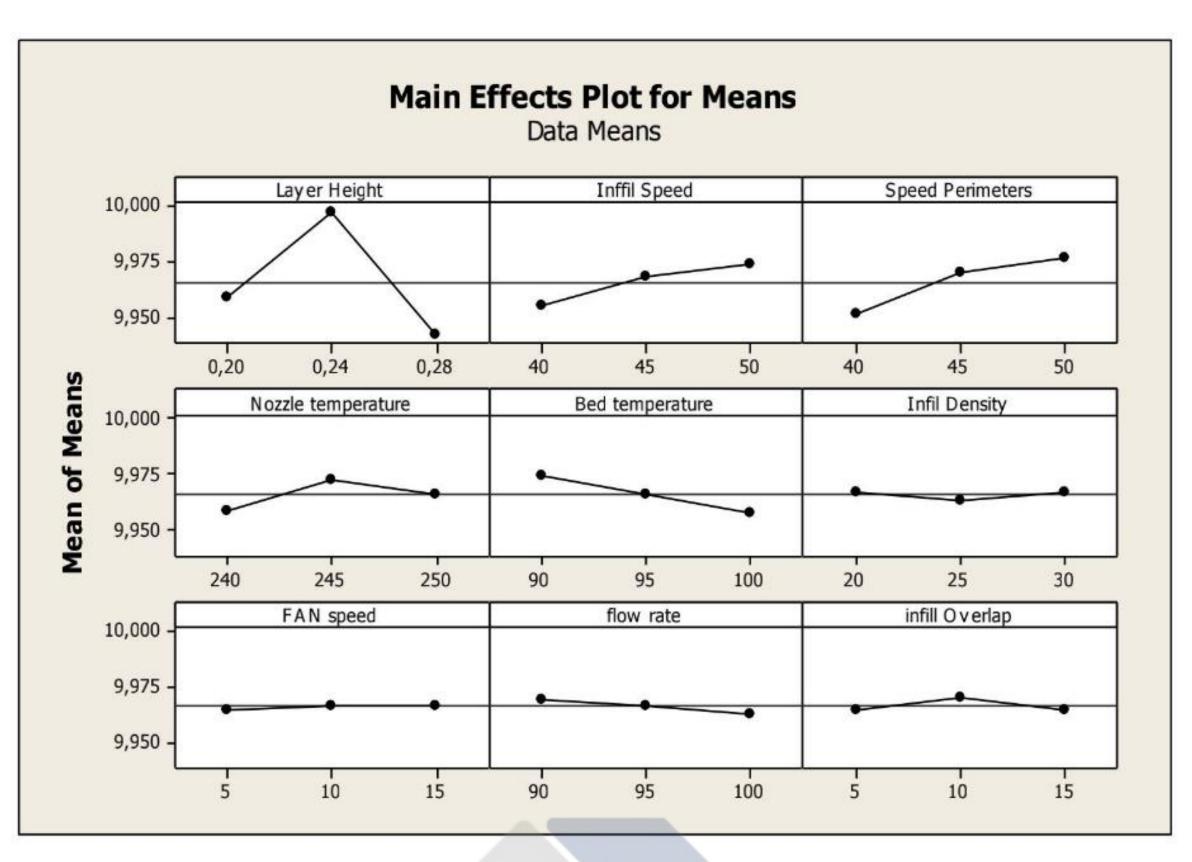
		Infill	Fan
Level	Flow Rate	Overlap	speed
1	9,880	9,895	9,886
2	9,905	9,889	9,885
3	9,900	9,900	9,913
Delta	0,025	0,011	0,029
Rank	5	8	4

Berdasarkan Gambar 4.4 dan tabel 4.5 parameter proses yang paling berpengaruh yaitu *speed perimeters*. Dan secara berturut parameter yang memiliki pengaruh serta level yang optimal sesuai dengan kualitas "*Smaller is better*" yaitu *speed perimeters* level dua (45mm/s), *Infill Speed* level dua (45mm/s), *Layer Height* level satu (0,20 mm), *Fan Speed* level tiga (15%), *Flow Rate* level dua (95%), *Bed Temperature* level satu (90°C), *Infill Density* level tiga (30%), *Infill Overlap* level dua (10%), *Nozzle Temperature* level tiga (250°C).

Gambar 4.5 Grafik S/N Ratio Diameter Luar Spesimen

Berdasarkan gambar 4.5 didapatkan bahwa Grafik S/N Ratio terhadap akurasi dimensi yang paling berpengaruh yaitu speed perimeters, Infill Speed, Layer Height, Fan Speed, Flow Rate, Bed Temperature, Infill Density, Infill Overlap, Nozzle Temperature.

Tabel 4.6 Hasil S/N Ratio Diameter Luar Spesimen


	Layer	Infill	Speed	Nozzle	Bed	Infill
Level	Height	Speed	Perimeters	Temperature	Temperature	Density
1	-19,93	-19,88	-19,87	-19,90	-19,91	-19,91
2	-19,91	-19,93	-19,95	-19,91	-19,90	-19,90
3	-19,88	-19,92	-19,90	-19,91	-19,91	-19,92
Delta	0,04	0,05	0,08	0,01	0,01	0,01
Rank	3	2	1	9	6	7

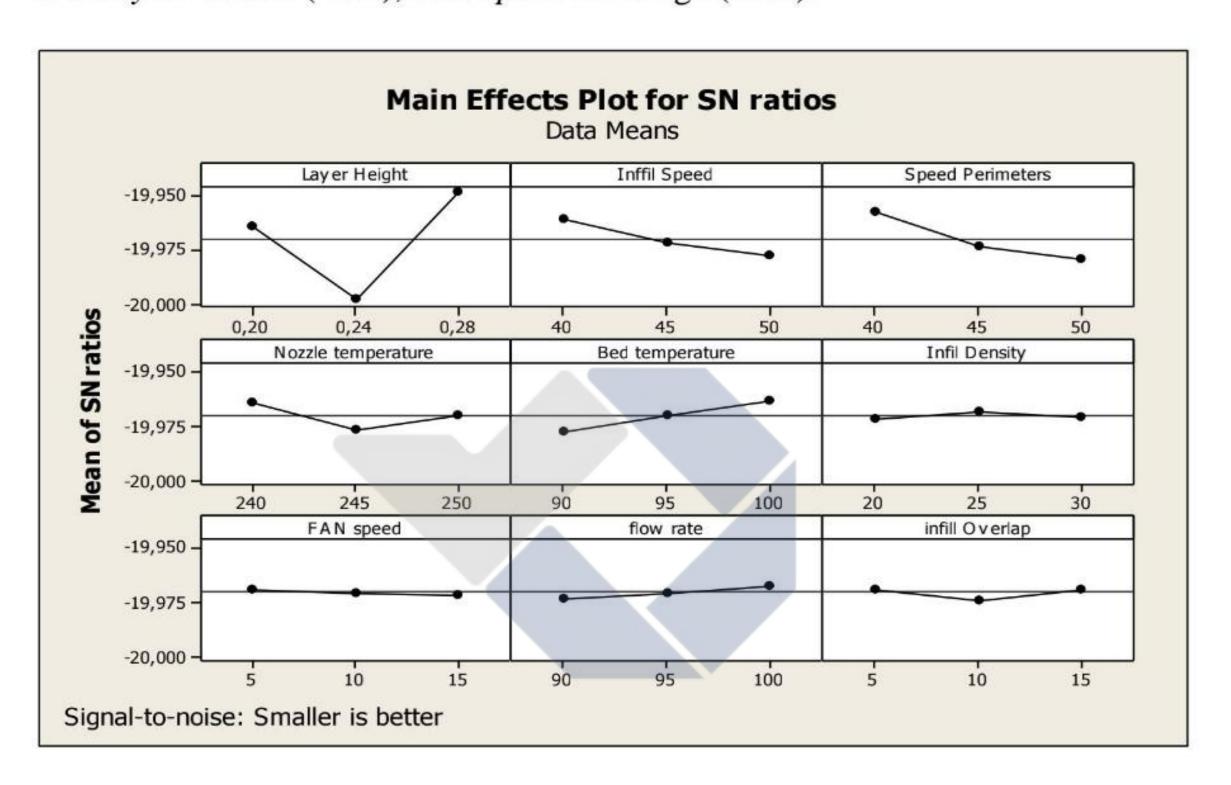
		Infill	Fan	
Level	Flow Rate	Overlap	speed	
1	-19,89	-19,91	-19,90	
2	-19,92	-19,90	-19,90	
3	-19,91	-19,91	-19,92	
Delta	0,02	0,01	0,03	
Rank	5	8	4	

Berdasarkan Gambar 4.5 dan Tabel 4.6 parameter proses yang optimal terhadap akurasi dimensi diameter luar yaitu yaitu speed perimeters level satu (40mm/s), Infill Speed level satu (40mm/s), Layer Height level tiga (0,28mm), Fan Speed level dua (10%), Flow Rate level satu (90%), Bed Temperature level dua (95°C), Infill Density level dua (25%), Infill Overlap level dua (10%), Nozzle Temperature level satu (240°C).

4.2.2 Mean Plot dan S/N Ratio "Smaller is better" Tinggi Spesimen

Hasil dari *Mean Plot* tinggi spesimen dari *sofware* anaisis akan ditunjukan pada Gambar 4.6 dan Tabel 4.7 kemudian hasil S/N *Ratio* "*Smaller is better*" ditunjukan pada gambar 4.7 dan tabel 4.8.

Gambar 4.6 Grafik Mean Plot Tinggi Spesimen


Berdasarkan gambar 4.6 didapatkan bahwa Grafik *Mean Plot* terhadap akurasi dimensi yang paling berpengaruh yaitu *Layer Height, speed perimeters*, *Infill Speed, Bed Temperature, Nozzle Temperature, Flow Rate, Infill Overlap, Infill Density, Fan Speed*.

Tabel 4.7 Hasil Mean Plot Tinggi Spesimen

Level	Layer Height	Infill Speed	Speed Perimeters	Nozzle Temperature	Bed Temperature	Infill Density
1	9,959	9,955	9,952	9,959	9,974	9,968
2	9,997	9,968	9,970	9,973	9,966	9,963
3	9,942	9,974	9,976	9,966	9,958	9,967
Delta	0,056	0,019	0,024	0,014	0,017	0,004
Rank	1	3	2	5	4	8

		Infill	Fan
Level	Flow Rate	Overlap	speed
1	9,969	9,964	9,965
2	9,966	9,970	9,966
3	9,963	9,964	9,967
Delta	0,006	0,006	0,002
Rank	6	7	9

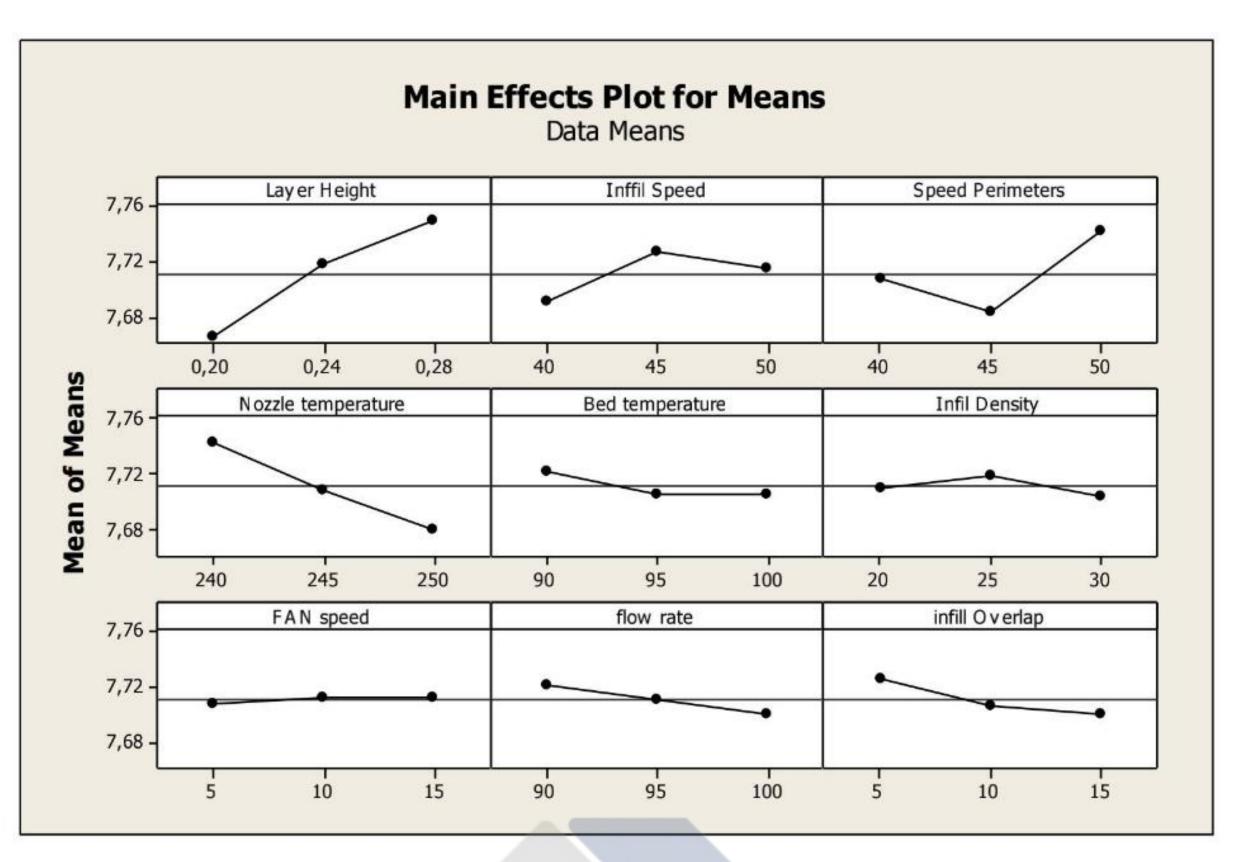
Berdasarkan Tabel 4.7 dapat dikatakan bahwa parameter proses yang memiliki pengaruh paling besar terhadap keakuratan dimensi Tinggi spesimen yaitu *Layer Height*. Dan untuk pengaruh parameter proses secara berurutan yaitu *Layer Height* level dua (0,24 mm), *speed perimeters* level tiga (50 mm/s), *Infill Speed* level tiga (50mm/s), *Bed Temperature* level satu (90°C), *Nozzle Temperature* level dua (245°C), *Flow Rate* level satu (90%), *Infill Overlap* level dua (10 %), *Infill Density* level satu (20%), *Fan Speed* level tiga (15%).

Gambar 4.7 Grafik S/N Ratio Tinggi Spesimen

Berdasarkan gambar 4.7 didapatkan bahwa Grafik S/N *Ratio* terhadap akurasi dimensi yang paling berpengaruh yaitu *Layer Height, speed perimeters*, *Infill Speed, Bed Temperature*, *Nozzle Temperature*, *Flow Rate*, *Infill Overlap*, *Infill Density*, *Fan Speed*

Tabel 4.8 Hasil S/N Ratio Tinggi Spesimen

Level	Layer Height	Infill Speed	Speed Perimeters	Nozzle Temperature	Bed Temperature	Infill Density
1	-19,96	-19,96	-19,96	-19,96	-19,98	-19,97
2	-20,00	-19,97	-19,97	-19,98	-19,97	-19,97
3	-19,95	-19,98	-19,98	-19,97	-19,96	-19,97


Level	Layer Height	Infill Speed	Speed Perimeters	Nozzle Temperature	Bed Temperature	Infill Density
Delta	0,05	0,02	0,02	0,01	0,01	0,00
Rank	1	3	2	5	4	8

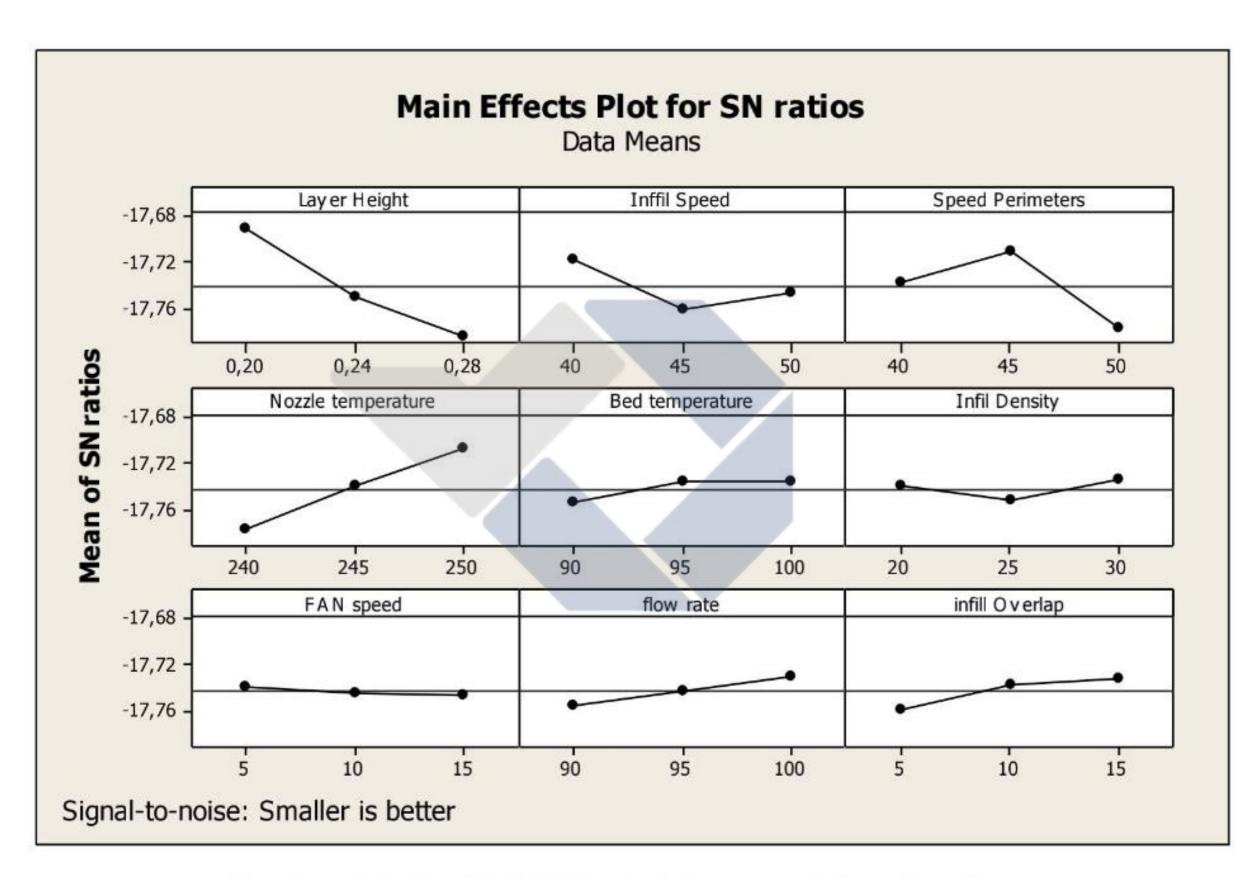
		Infill	Fan	
Level	Flow Rate	Overlap	speed	
1	-19,97	-19,97	-19,97	
2	-19,97	-19,97	-19,97	
3	-19,97	-19,97	-19,97	
Delta	0,01	0,00	0,00	
Rank	6	7	9	

Berdasarkan Tabel 4.8 dapat dikatakan bahwa parameter proses yang memiliki pengaruh paling besar terhadap keakuratan dimensi Tinggi spesimen yaitu *Layer Height*. Dan untuk pengaruh parameter proses secara berurutan yaitu *Layer Height* level tiga (0,28mm), *speed perimeters* level satu (40mm/s), *Infill Speed* level satu (40mm/s), *Bed Temperature* level tiga (100°C), *Nozzle Temperature* level satu (240°C), *Flow Rate* level tiga (100%), *Infill Overlap* level satu (5%), *Infill Density* level dua (25%), *Fan Speed* level satu (5%).

4.2.3 Mean Plot dan S/N Ratio "Smaller is better" Diameter Dalam Spesimen

Hasil dari *Mean Plot* Diameter Dalam Spesimen dari *sofware* anaisis akan ditunjukan pada Gambar 4.8 dan Tabel 4.9 kemudian hasil S/N *Ratio* "*Smaller is better*" ditunjukan pada gambar 4.9 dan tabel 4.10.

Gambar 4.8 Grafik Mean Plot Diameter Dalam Spesimen


Berdasarkan gambar 4.7 didapatkan bahwa *Mean Plot* terhadap akurasi dimensi yang paling berpengaruh yaitu *Layer Height*, *Nozzle Temperature*, *Speed Perimeters*, *Infill Speed*, *Infill Overlap*, *Flow Rate*, *Bed Temperature*, *Infill Density*, *Fan Speed*.

Tabel 4.9 Hasil Mean Plot Diameter Dalam Spesimen

Layer		Infill	Speed	Nozzle	Bed	Infill
Level	Height	Speed	Perimeters	Temperature	Temperature	Density
1	7,666	7,690	7,708	7,743	7,722	7,710
2	7,718	7,727	7,683	7,709	7,706	7,719
3	7,748	7,715	7,742	7,681	7,705	7,704
Delta	0,082	0,037	0,059	0,062	0,017	0,016
Rank	1	4	3	2	7	8

		Infill	Fan
Level	Flow Rate	Overlap	speed
1	7,722	7,725	7,707
2	7,711	7,706	7,712
3	7,700	7,701	7,713
Delta	0,022	0,025	0,006
Rank	6	5	9

Berdasarkan Gambar 4.8 dan Tabel 4.9 dapat dikatakan bahwa parameter proses yang memiliki pengaruh paling besar terhadap keakuratan dimensi Tinggi spesimen yaitu *Layer Height*. Dan untuk pengaruh parameter proses secara berurutan yaitu *Layer Height* level tiga (0,28 mm), *Nozzle Temperature* level satu (240°C), *Speed Perimeters* level tiga (50 mm/s), *Infill Speed* level dua (45mm/s), *Infill Overlap* level satu (5%), *Flow Rate* level satu (90%), *Bed Temperature* level satu (90°C), *Infill Density* level dua (25%), *Fan Speed* level tiga (15%).

Gambar 4.9 Grafik S/N Ratio Diameter dalam Spesimen

Berdasarkan gambar 4.9 didapatkan bahwa Grafik S/N *Ratio* terhadap akurasi dimensi yang paling berpengaruh yaitu *Layer Height*, *Nozzle Temperature*, *Speed Perimeters*, *Infill Speed*, *Infill Overlap*, *Flow Rate*, *Bed Temperature*, *Infill Densit*, *Fan Speed*.

Tabel 4.10 Hasil S/N Ratio Diameter dalam Spesimen

	Layer	Infill	Speed	Nozzle	Bed	Infill
Level	Height	Speed	Perimeters	temperature	temperature	Density
1	-17,69	-17,72	-17,74	-17,78	-17,75	-17,74
2	-17,75	-17,76	-17,71	-17,74	-17,74	-17,75
3	-17,78	-17,75	-17,78	-17,71	-17,74	-17,73
Delta	0,09	0,04	0,07	0,07	0,02	0,02
Rank	1	4	3	2	7	8

		Infill	FAN
Level	flow rate	Overlap	speed
1	-17,75	-17,76	-17,74
2	-17,74	-17,74	-17,74
3	-17,73	-17,73	-17,74
Delta	0,02	0,03	0,01
Rank	6	5	9

Berdasarkan Gambar 4.9 dan Tabel 4.10 dapat dikatakan bahwa parameter proses yang memiliki pengaruh paling besar terhadap keakuratan dimensi Tinggi spesimen yaitu *Layer Height*. Dan untuk pengaruh parameter proses secara berurutan yaitu *Layer Height* level satu (0,20mm), *Nozzle Temperature* level tiga (250°C), *Speed Perimeters* level dua (45mm/s), *Infill Speed* level satu (40mm/s), *Infill Overlap* level tiga (15%), *Flow Rate* level tiga (100%), *Bed Temperature* level tiga (100°C), *Infill Density* level tiga (30%), *Fan Speed* level satu (5%).

4.3 Analisis Varian Rasio S/N

Untuk mengetahui parameter yang berpengaruh terhadap nilai rata-rata akurasi dimensi, maka untuk mengetahui parameter yang berpengaruh secara signifikansi terhadap nilai rasio S/N juga dapat dilakukan *Analysis of variance*. dapat dilihat pada tabel 4.11.

Tabel 4.11 Analysis of variance Diameter Luar

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Layer Height	2	0,008857	0,008857	0,004429	3,14	0,098
Infill Speed	2	0,010834	0,010834	0,005417	3,85	0,068
Speed Perimeters	2	0,028968	0,028968	0,014484	10,28	0,006
Nozzle temperature	2	0,000187	0,000187	0,000094	0,07	0,936
Bed temperature	2	0,001073	0,001073	0,000536	0,38	0,695
Infill Density	2	0,000865	0,000865	0,000433	0,31	0,744
Fan speed	2	0,003584	0,003584	0,001792	1,27	0,331
flow rate	2	0,002461	0,002461	0,001230	0,87	0,454
infill Overlap	2	0,000411	0,000411	0,000206	0,15	0,866
Error	8	0,011270	0,011270	0,001409		
Total	26	0,068512				

Berdasarkan tabel 4.11 bahwa hasil anova Diameter Luar didapatkan keputusan uji hipotesis dengan menggunakan distribusi F test dapat dilihat pada tabel 4.12.

Tabel 4.12 Keputusan Uji Diameter Luar

Komparasi Terhadap	F-Test	F Tabel	Keputusan Uji
Respon		(0,05;2,51)	
Layer Height	3,14		HO ditolak
Infill Speed	3,85		HO ditolak
Speed Perimeters	10,28		HO ditolak
Nozzle Temperature	0,07	2,51	Gagal ditolak
Bed Temperature	0,38		Gagal ditolak
Infill Density	0,31		Gagal ditolak
FAN Speed	1,27		Gagal ditolak
Flow Rate	0,87		Gagal ditolak
Infill Overlap	0,15		Gagal ditolak

Dari tabel 4.12 dapat disimpulkan bahwa sembilan parameter *Layer Height*, *Infill Speed, Speed Perimeters, Nozzle Temperature, Bed Temperature, Infill Density, FAN Speed, Flow Rate, Infill Overlap* parameter yang paling berpengaruh yaitu *Speed Perimeters, Infill Speed*, dan *Layer Height* karena nilai F-Test lebih besar dibandingkan dengan nilai F-Tabel maka HO ditolak, sedangkan untuk parameter *Nozzle Temperature, Bed Temperature, Infil Density, FAN Speed, Flow*

Rate, Infill Overlap niali F-Test lebih kecil dengan F-Tabel maka Gagal ditolak, artinya parameter tersebut tidak ada pengaruh terhadap akuransi dimensi. Dari sembilan parameter Layer Height, Infill Speed, Speed Perimeters, Nozzle Temperature, Bed Temperature, Infill Density, FAN Speed, Flow Rate, Infill Overlap dapat dilihat level mana yang paling berpengaruh terhadap keakurasian dimensi dapat dilihat pada tabel 4.13.

Tabel 4.13 Perbandingan level dari *Layer Height* terhadap respon S/N Diameter Luar

Layer			
Height	N	Mean	Grouping
0,28	9	-19,88	A
0,24	9	-19,91	Α
0,20	9	-19,93	Α

Means that do not share a letter are significantly different.

Layer	Difference	SE of		Adjusted
Height	of Means	Difference	T-Value	P-Value
0,24	0,01840	0,01769	1,040	0,5745
0,28	0,04416	0,01769	2,496	0,0851

Sumber: Hasil Perhitungan software

Dari tabel 4.13 dapat dilihat bahwa ketiga level parameter *Layer Height* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (0,28 mm) karena mean pada level tiga merupakan nilai mean yang tertinggi.

Tabel 4.14 Perbandingan level dari *Infill Speed* terhadap respon S/N Diameter Luar

Infill			
Speed	N	Mean	Grouping
40	9	-19,88	A
50	9	-19,92	A
45	9	-19,93	A

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests					
Infill	Difference	SE of		Adjusted	
Speed	of Means	Difference	T-Value	P-Value	
45	-0,04707	0,01769	-2,660	0,0668	
50	-0,03553	0,01769	-2,008	0,1723	

Sumber: Hasil Perhitungan software

Dari tabel 4.14 dapat dilihat bahwa ketiga level parameter *Inffil Speed* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (40 mm/s) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.15 Perbandingan level dari Speed Perimeters terhadap respon S/N
Diameter Luar

Speed			
Perimeters	N	Mean	Grouping
40	9	-19,87	A
50	9	-19,90	A
45	9	-19,95	В

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests				
Speed	Difference	SE of		Adjusted
Perimeters	of Means	Difference	T-Value	P-Value
45	-0,07870	0,01769	-4,448	0,0054
50	-0,02582	0,01769	-1,459	0,3585

Sumber: Hasil Perhitungan software

Dari tabel 4.15 dapat dilihat bahwa ketiga level parameter *Speed Perimeters* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (40 mm/s) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.16 Perbandingan level dari *Nozzle Temperature* terhadap respon S/N Diameter Luar

Nozzle			
Temperature	N	Mean	Grouping
240	9	-19,90	A
245	9	-19,91	A
250	9	-19,91	Α

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests					
Nozzle	Difference	SE of		Adjusted	
Temperature	of Means	Difference	T-Value	P-Value	
245	-0,003960	0,01769	-0,2238	0,9729	
250	-0,006386	0,01769	-0,3609	0,9313	

Sumber: Hasil Perhitungan software

Dari tabel 4.16 dapat dilihat bahwa ketiga level parameter *Nozzle temperature* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (240°C) karena mean pada level satu merupakan nilai mean yang tertiggi.

Tabel 4.17 Perbandingan level dari Bed Temperature terhadap respon S/N

	Dia	Diameter Luar					
8	Bed						
	Temperature	N	Mean	Grouping			
	95		-19,90	A			
	100	9	-19,91	A			
	90	9	-19,91	Α			

Means that do not share a letter are significantly different.

Bed	Difference	SE of		Adjusted
temperature	of Means	Difference	T-Value	P-Value
95	0,014426	0,01769	0,8153	0,7046
100	0,002449	0,01769	0,1384	0,9895

Sumber: Hasil Perhitungan software

Dari tabel 4.17 dapat dilihat bahwa ketiga level parameter *Bed temperature* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level dua (95°C) karena mean pada level dua merupakan nilai mean yang tertinggi.

Tabel 4.18 perbandingan level dari Infill Density terhadap respon S/N Diameter

Infill			
Density	N	Mean	Grouping
25	9	-19,90	Α
20	9	-19,91	A
30	9	-19,92	Α

Tukey Simultaneous Tests

Infill	Difference	SE of		Adjusted
Density	of Means	Difference	T-Value	P-Value
25	0,003388	0,01769	0,1915	0,9800
30	-0,009952	0,01769	-0,5625	0,8432

Sumber: Hasil Perhitungan software

Dari tabel 4.18 dapat dilihat bahwa ketiga level parameter *Infill Density* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level dua (25%) karena mean pada level dua merupakan nilai mean yang tertinggi.

Tabel 4.19 Perbandingan level dari Fan Speed terhadap respon S/N Diameter Luar

Fan			
speed	N	Mean	Grouping
10	9	-19,90	A
5	9	-19,90	A
15	9	-19,92	A

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests

Fan	Difference	SE of		Adjusted
speed	of Means	Difference	T-Value	P-Value
10	0,00146	0,01769	0,083	0,9962
15	-0,02368	0,01769	-1,338	0,4150

Sumber: Hasil Perhitungan software

Dari tabel 4.19 dapat dilihat bahwa ketiga level parameter *Fan speed* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level dua (10%) karena mean pada level dua merupakan nilai mean yang tertinggi.

Tabel 4.20 perbandingan level dari Flow Rate terhadap respon S/N Diameter Luar

Flow	,		
Rate	N	Mean	Grouping
90	9	-19,89	A
100	9	-19,91	A
95	9	-19,92	A

Tukev Simultaneous Tests

3	1 tine	Simulation	CUB I CBI	,5
Flow	Difference	SE of		Adjusted
Rate	of Means	Difference	T-Value	P-Value
95	-0,02203	0,01769	-1,245	0,4619
100	-0,01780	0,01769	-1,006	0,5938

Sumber: Hasil Perhitungan software

Dari tabel 4.20 dapat dilihat bahwa ketiga level parameter *Flow Rate* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (90%) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.21 perbandingan level dari Infill Overlap terhadap respon S/N Diameter

infill			
Overlap	N	Mean	Grouping
10	9	-19,90	A
5	9	-19,91	Α
15	9	-19,91	A

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests

infill	Difference	SE of		Adjusted
Overlap	of Means	Difference	T-Value	P-Value
10	0,004909	0,01769	0,2775	0,9587
15	-0,004651	0,01769	-0,2629	0,9628

Sumber: Hasil Perhitungan software

Dari tabel 4.21 dapat dilihat bahwa ketiga level parameter *Infill Overlap* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level dua (10%) karena mean pada level dua merupakan nilai mean yang tertinggi.

Tabel 4.22 Analysis of variance Tinggi

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Layer Height	2	0,0110893	0,0110893	0,0055446	25,65	0,000
Infill Speed	2	0,0012656	0,0012656	0,0006328	2,93	0,111
Speed Perimeters	2	0,0022108	0,0022108	0,0011054	5,11	0,037
Nozzle temperature	2	0,0006443	0,0006443	0,0003222	1,49	0,282
Bed temperature	2	0,0009721	0,0009721	0,0004860	2,25	0,168

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Infill Density	2	0,0000732	0,0000732	0,0000366	0,17	0,847
Fan speed	2	0,0000181	0,0000181	0,0000091	0,04	0,959
flow rate	2	0,0001279	0,0001279	0,0000639	0,30	0,752
infill Overlap	2	0,0001417	0,0001417	0,0000708	0,33	0,730
Error	8	0,0017291	0,0017291	0,0002161		
Total	26	0,0182720		70		

Berdasarkan tabel 4.22 bahwa hasil anova Tinggi Spesimen didapatkan keputusan uji hipotesis dengan menggunakan distribusi F test dapat dilihat pada tabel 4.23.

Tabel 4.23 Keputusan Uji Tinggi

Komparasi Terhadap	F-Test	F Tabel	Keputusan Uji
Respon		(0,05;2,51)	
Layer Height	25,65		HO ditolak
Infill Speed	2,93		HO ditolak
Speed Perimeters	5,11		HO ditolak
Nozzle Temperature	1,49	2,51	Gagal ditolak
Bed Temperature	2,25		Gagal ditolak
Infill Density	0,17		Gagal ditolak
Fan Speed	0,04		Gagal ditolak
Flow Rate	0,30		Gagal ditolak
Infill Overlap	0,33		Gagal ditolak

Dari tabel 4.23 dapat disimpulkan bahwa sembilan parameter *Layer Height, Inffil Speed, Speed Perimeters, Nozzle Temperature, Bed Temperature, Infill Density, Fan Speed, Flow Rate, Infill Overlap* parameter yang paling berpengaruh yaitu *Layer Height*, *Speed Perimeters, Infill Speed,* dan karena nilai F-Test lebih besar dibandingkan dengan nilai F-Tabel maka HO ditolak, sedangkan untuk parameter *Nozzle Temperature, Bed Temperature, Infil Density, Fan Speed, Flow Rate, Infill Overlap* niali F-Test lebih kecil dengan F-Tabel maka Gagal ditolak, artinya parameter tersebut tidak ada pengaruh terhadap akuransi dimensi. Dari sembilan parameter *Layer Height, Infill Speed, Speed Perimeters, Nozzle*

Temperature, Bed Temperature, Infill Density, Fan Speed, Flow Rate, Infill Overlap dapat dilihat level mana yang paling berpengaruh terhadap keakurasian dimensi dapat dilihat pada tabel 4.24.

Tabel 4.24 Perbandingan level dari Layer Height terhadap respon S/N Tinggi

Layer			
Height	N	Mean	Grouping
0,28	9	-19,95	Α
0,20	9	-19,96	Α
0,24	9	-20,00	В

Means that do not share a letter are significantly different.

	Tukey S	'imultaneo	ous Test.	S
Layer	Difference	SE of	9	Adjusted
Height	of Means	Difference	T-Value	P-Value
0,24	-0,03333	0,006930	-4,810	0,0034
0,28	0,01519	0,006930	2,192	0,1326

Sumber: Hasil Perhitungan software

Dari tabel 4.24 dapat dilihat bahwa ketiga level parameter *Layer Height* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (0,28mm) karena mean pada level tiga merupakan nilai mean yang tertinggi.

Tabel 4.25 Perbandingan level dari Infill Speed terhadap respon S/N Tinggi

Infill			
Speed	N	Mean	Grouping
40	9	-19,96	A
45	9	-19,97	Α
50	9	-19,98	Α

Means that do not share a letter are significantly different.

Infill	Difference	SE of		Adjusted
Speed	of Means	Difference	T-Value	P-Value
45	-0,01126	0,006930	-1,624	0,2907
50	-0,01639	0,006930	-2,365	0,1030

Sumber: Hasil Perhitungan software

Dari tabel 4.25 dapat dilihat bahwa ketiga level parameter *Infill Speed* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi

adalah level satu (40mm/s) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.26 Perbandingan level dari Speed Perimeters terhadap respon S/N Tinggi

Speed			
Perimeters	N	Mean	Grouping
40	9	-19,96	A
45	9	-19,97	A B
50	9	-19,98	В

Means that do not share a letter are significantly different.

Speed	Tukey Su Difference	multaneou SE of		Adjusted
Perimeters				
45	-0,01576	0,006930	-2,274	0,1177
50	-0,02138	0,006930	-3,085	0,0358

Sumber: Hasil Perhitungan software

Dari tabel 4.26 dapat dilihat bahwa ketiga level parameter *Speed Perimeters* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (40mm/s) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.27 Perbandingan level dari *Nozzle temperature* terhadap respon S/N Tinggi

Nozzle			
Temperature	N	Mean	Grouping
240	9	-19,96	A
250	9	-19,97	A
245	9	-19,98	Α

Means that do not share a letter are significantly different.

Nozzle	Difference	SE of		Adjusted
Temperatur	e of Means	Difference	T-Value	P-Value
245	-0,01197	0,006930	-1,727	0,2540
250	-0,00596	0,006930	-0,860	0,6788

Sumber: Hasil Perhitungan software

Dari tabel 4.27 dapat dilihat bahwa ketiga level parameter *Nozzle temperature* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (240°C) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.28 Perbandingan level dari *Bed temperature* terhadap respon S/N Tinggi

Bed			
Temperature	N	Mean	Grouping
100	9	-19,96	A
95	9	-19,97	A
90	9	-19,98	A

Means that do not share a letter are significantly different.

Bed	Difference	SE of		Adjusted
Temperature	of Means	Difference	T-Value	P-Value
95	0,007520	0,006930	1,085	0,5488
100	0,014696	0,006930	2,121	0,1468

Sumber: Hasil Perhitungan software

Dari tabel 4.28 dapat dilihat bahwa ketiga level parameter *Bed temperature* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tigga (100°C) karena mean pada level tiga merupakan nilai mean yang tertinggi.

Tabel 4.29 Perbandingan level dari Infill Density terhadap respon S/N Tinggi

Infill			
Density	N	Mean	Grouping
25	9	-19,97	A
30	9	-19,97	A
20	9	-19,97	A

Means that do not share a letter are significantly different.

Infill	Difference	SE of		Adjusted
Density	of Means	Difference	T-Value	P-Value
25	0,003767	0,006930	0,54359	0,8525
30	0,000638	0,006930	0,09204	0,9953

Dari tabel 4.29 dapat dilihat bahwa ketiga level parameter Infill Density terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level dua (25%) karena mean pada level dua merupakan nilai mean yang tertiggi.

Tabel 4.30 Perbandingan level dari Fan speed terhadap respon S/N Tinggi

Fan			
speed	N	Mean	Grouping
5	9	-19,97	A
10	9	-19,97	A
15	9	-19,97	A

Means that do not share a letter are significantly different.

Fan	Difference	SE of		Adjusted
speed	of Means	Difference	T-Value	P-Value
10		0,006930		
15	-0,001777	0,006930	-0,2564	0,9646

Sumber: Hasil Perhitungan software

Dari tabel 4.30 dapat dilihat bahwa ketiga level parameter *Fan speed* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (5%) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.31 Perbandingan level dari *Flow Rate* terhadap respon S/N Tinggi

Flow	,		
Rate	N	Mean	Grouping
100	9 .	-19,97	A
95	9 .	-19,97	A
90	9 .	-19,97	Α

Means that do not share a letter are significantly different.

flow	Difference	SE of		Adjusted
Rate	of Means	Difference	T-Value	P-Value
95	0,002088	0,006930	0,3013	0,9515
100	0,005292	0,006930	0,7636	0,7344

Sumber: Hasil Perhitungan software

Dari tabel 4.31 dapat dilihat bahwa ketiga level parameter *flow rate* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (100%) karena mean pada level tiga merupakan nilai mean yang tertiggi.

Tabel 4.32 Perbandingan level dari Infill Overlap terhadap respon S/N Tinggi

Infill			
Overlap	N	Mean	Grouping
5	9	-19,97	A
15	9	-19,97	A
10	9	-19,97	A

Means that do not share a letter are significantly different.

Infill	Difference	SE of		Adjusted
Overlap	of Means	Difference	T-Value	P-Value
10	-0,004876	0,006930	-0,7036	0,7682
15	-0,000034	0,006930	-0,0049	1,0000

Sumber: Hasil Perhitungan software

Dari tabel 4.32 dapat dilihat bahwa ketiga level parameter *infill Overlap* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (5%) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.33 Analysis of variance Diameter Dalam

Source	DF	Seq SS	Adj SS	Adj MS	\mathbf{F}	P
Layer Height	2	0,039805	0,039805	0,019903	17,07	0,001
Infill Speed	2	0,008230	0,008230	0,004115	3,53	0,080
Speed Perimeters	2	0,020015	0,020015	0,010008	8,58	0,010
Nozzle temperature	2	0,022091	0,022091	0,011046	9,47	0,008
Bed temperature	2	0,002136	0,002136	0,001068	0,92	0,438
Infill Density	2	0,001486	0,001486	0,000743	0,64	0,554
Fan speed	2	0,000214	0,000214	0,000107	0,09	0,913
flow rate	2	0,002710	0,002710	0,001355	1,16	0,361
infill Overlap	2	0,003801	0,003801	0,001901	1,63	0,255
Error	8	0,009328	0,009328	0,001166		
Total	26	0,109817				

Berdasarkan tabel 4.33 bahwa hasil anova Diameter Dalam Spesimen didapatkan keputusan uji hipotesis dengan menggunakan distribusi F test dapat dilihat pada tabel 4.34.

Tabel 4.34 Keputusan Uji Diameter Dalam

Komparasi Terhadap	F-Test	F Tabel	Keputusan Uji	
Respon	(0,05;2,51)			
Layer Height	17,07		HO ditolak	
Infill Speed	3,53		HO ditolak	
Speed Perimeters	8,58		HO ditolak	
Nozzle Temperature	9,47	2,51	HO ditolak	
Bed Temperature	0,92		Gagal ditolak	
Infill Density	0,64		Gagal ditolak	
FAN Speed	0,09		Gagal ditolak	
Flow Rate	1,16		Gagal ditolak	
Infill Overlap	1,63		Gagal ditolak	

Dari tabel 4.34 dapat disimpulkan bahwa sembilan parameter Layer Height, Infill Speed, Speed Perimeters, Nozzle Temperature, Bed Temperature, Infill Density, Fan Speed, Flow Rate, Infill Overlap parameter yang paling berpengaruh yaitu Layer Height, Nozzle Temperature, Speed Perimeters, Infill Speed, dan karena nilai F-Test lebih besar dibandingkan dengan nilai F-Tabel maka Gagal HO ditolak, sedangkan untuk parameter Bed Temperature, Infill Density, Fan Speed, Flow Rate, Infill Overlap niali F-Test lebih kecil dengan F-Tabel maka Gagal ditolak, artinya parameter tersebut tidak ada pengaruh terhadap akuransi dimensi. Dari sembilan parameter Layer Height, Infill Speed, Speed Perimeters, Nozzle Temperature, Bed Temperature, Infill Density, Fan Speed, Flow Rate, Infill Overlap dapat dilihat level mana yang paling berpengaruh terhadap keakurasian dimensi dapat dilihat pada tabel 4.35.

Tabel 4.35 Perbandingan level dari *Layer Height* terhadap respon S/N Diameter Dalam

Layer				_
	N	Mean	Grouping	
0,20	9	-17,69	A	
0,24	9	-17,75	В	
0,28	9	-17,78	В	

Layer	Difference	SE of	Adjusted
Height	of Means	Difference T-Valu	ie P-Value
0,24		0,01610 -3,662	0,0156
0,28	-0,09294	0,01610 -5,774	0,0011

Sumber: Hasil Perhitungan software

Dari tabel 4.35 dapat dilihat bahwa ketiga level parameter *Layer Height* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (0,20mm) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.36 Perbandingan level dari *Infill Speed* terhadap respon S/N Diameter Dalam

Infill			
Speed	N	Mean	Grouping
40	9	-17,72	A
50	9	-17,75	A
45	9	-17,76	A

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests					
Infill I	Difference	SE of		Adjusted	
Speed	of Means	Difference	T-Value	P-Value	
45	-0,04194	0,01610	-2,605	0,0724	
50	-0,02821	0,01610	-1,753	0,2452	

Sumber: Hasil Perhitungan software

Dari tabel 4.36 dapat dilihat bahwa ketiga level parameter *Infill Speed* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (40mm/s) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.37 Perbandingan level dari *Speed Perimeters* terhadap respon S/N Diameter Dalam

Speed			
Perimeters	N	Mean	Grouping
45	9	-17,71	A
40	9	-17,74	A B
50	9	-17,78	В

Tukey Simultaneous Tests						
Speed	Difference	SE of		Adjusted		
Perimeters	of Means	Difference	T-Value	P-Value		
45	0,02852	0,01610	1,772	0,2389		
50	-0,03795	0,01610	-2,357	0,1042		

Sumber: Hasil Perhitungan software

Dari tabel 4.37 dapat dilihat bahwa ketiga level parameter *Speed Perimeters* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level dua (45mm/s) karena mean pada level dua merupakan nilai mean yang tertinggi.

Tabel 4.38 Perbandingan level dari *Nozzle temperature* terhadap respon S/N Diameter Dalam

Nozzle			
Temperature	N	Mean	Grouping
250	9 -	17,71	Α
245	9 -	17,74	A B
240	9 -	17,78	В

Means that do not share a letter are significantly different.

Nozzle	Difference	SE of	1	Adjusted
Temperat	ture of Means	Difference	T-Value	P-Value
245	0,03854		2,395	0,0987
250	0,06994	0,01610	4,345	0,0062

Sumber: Hasil Perhitungan software

Dari tabel 4.38 dapat dilihat bahwa ketiga level parameter *Nozzle temperature* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (250°C) karena mean pada level tiga merupakan nilai mean yang tertiggi.

Tabel 4.39 Perbandingan level dari *Bed temperature* terhadap respon S/N Diameter Dalam

Bed			
Temperature	N	Mean	Grouping
100	9 -1	7,74	Α
95	9 -1	7,74	Α
90	9 -1	7,75	A

 Tukey Simultaneous Tests

 Bed
 Difference
 SE of
 Adjusted

 Temperature
 of Means Difference
 T-Value
 P-Value

 95
 0,01848
 0,01610
 1,148
 0,5137

 100
 0,01923
 0,01610
 1,195
 0,4885

Sumber: Hasil Perhitungan software

Dari tabel 4.39 dapat dilihat bahwa ketiga level parameter *Bed temperature* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (100°C) karena mean pada level tiga merupakan nilai mean yang tertinggi.

Tabel 4.40 Perbandingan level dari *Infill Density* terhadap respon S/N Diameter Dalam

Infill			
	N	Mean	Grouping
30		-17,73	Α
20	9	-17,74	A
25	9	-17,75	Α

Means that do not share a letter are significantly different.

Tukey Simultaneous Tests						
Infill	Difference	SE of		Adjusted		
Density	of Means	Difference	T-Value	P-Value		
25	-0,01114	0,01610	-0,6921	0,7746		
30	0,00686	0,01610	0,4263	0,9058		

Sumber: Hasil Perhitungan software

Dari tabel 4.40 dapat dilihat bahwa ketiga level parameter *Infill Density* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (30%) karena mean pada level tiga merupakan nilai mean yang tertinggi.

Tabel 4.41 Perbandingan level dari Fan speed terhadap respon S/N Diameter Dalam

Fan			
speed	N	Mean	Grouping
5	9	-17,74	A
10	9	-17,74	A
15	9	-17,74	A

Fan	Difference	SE of		Adjusted
speed	of Means	Difference	T-Value	P-Value
10	-0,005642	0,01610	-0,3505	0,9351
15	-0,006265	0,01610	-0,3892	0,9207

Sumber: Hasil Perhitungan software

Dari tabel 4.41 dapat dilihat bahwa ketiga level parameter *FAN speed* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level satu (5%) karena mean pada level satu merupakan nilai mean yang tertinggi.

Tabel 4.42 Perbandingan level dari *Flow Rate* terhadap respon S/N Diameter Dalam

Flow	,		
Rate	N	Mean	Grouping
100	9	-17,73	A
95	9	-17,74	A
90	9	-17,75	A

Means that do not share a letter are significantly different.

Flow	Difference	SE of		Adjusted
Rate	of Means	Difference	T-Value	P-Value
95	0,01241	0,01610	0,7707	0,7303
100	0,02454	0,01610	1,5245	0,3305

Sumber: Hasil Perhitungan software

Dari tabel 4.42 dapat dilihat bahwa ketiga level parameter *flow rate* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (100%) karena mean pada level tiga merupakan nilai mean yang tertinggi.

Tabel 4.43 Perbandingan level dari *Infill Overlap* terhadap respon S/N Diameter

Infill Overlap N Mean Grouping 15 9 -17,73 A 10 9 -17,74 A

Means that do not share a letter are significantly different.

9 -17,76 A

infill	Difference	SE of	Adjuste	
Overlap	of Means	Difference	T-Value	P-Value
10	0,02142	0,01610	1,331	0,4187
15	0,02772	0,01610	1,722	0,2554

Sumber: Hasil Perhitungan software

Dari tabel 4.43 dapat dilihat bahwa ketiga level parameter *infill Overlap* terhadap respon variabel S/N yang paling baik terhadap nilai keakurasian dimensi adalah level tiga (15%) karena mean pada level tiga merupakan nilai mean yang tertinggi.

4.4 Uji Konfirmasi

Uji konfirmasi dilakukan untuk memvalidasi hasil yang diperoleh. Hal ini dilakukan dengan membandingkan hasil rata-rata akuransi dimensi " Diameter Luar, Tinggi dan Diameter Dalam" awal dengan rata-rata hasil akuransi dimensi uji konfirmasi. Uji konfirmasi dilakukan dengan menggunakan kombinasi *setting* parameter proses yang optimal sesuai pengukuranya.

Gambar 4.10 Spesimen Uji Konfirmasi Diameter Luar

Tabel 4.44 Hasil Uji Konfirmasi Diameter Luar

Diameter Luar							
Eksperimen	Spesimen 1	Spesimen 2	Spesimen 3	Rata-Rata			
Kombinasi awal	9,889	9,893	9,902	9,895			
Kombinasi optimum	9,986	9,994	9,969	9,983			

Pada gambar 4.10 merupakan spesimen uji konfirmasi yang akan diukur diameter luar dan pada tabel 4.44 menunjukan hasil uji konfirmasi diameter luar spesimen dengan menggunakan parameter proses optimal yang terdapat pada gambar 4.5. parameter optimal yang digunakan yaitu *speed perimeters* (40mm/s), *Infill Speed* (40mm/s), *Layer Height* (0,28mm), *Fan Speed* (10%), *Flow Rate* (90%), *Bed Temperature* (95°C), *Infill Density* (25%), *Infill Overlap* (10%), *Nozzle Temperature* (240°C).

Gambar 4.11 Spesimen Uji Konfirmasi Tinggi Spesimen

Tabel 4.45 Hasil Uji Konfirmasi Tinggi Spesimen

Tinggi Spesimen							
Eksperimen	Spesimen 1	Spesimen 2	Spesimen 3	Rata-Rata			
Kombinasi awal	9,966	9,966	9,966	9,966			
Kombinasi optimum	9,971	9,980	9,966	9,972			

Pada gambar 4.11 merupakan spesimen uji konfirmasi yang akan diukur tinggi spesimen dan pada tabel 4.45 menunjukan hasil uji konfirmasi tinggi spesimen dengan menggunakan parameter proses optimal yang terdapat pada gambar 4.7. parameter optimal yang digunakan yaitu *Layer Height* (0,28mm), speed perimeters (40mm/s), Infill Speed (40mm/s), Bed Temperature (100°C), Nozzle Temperature (240°C), Flow Rate (100%), Infill Overlap (5%), Infill Density (25%), Fan Speed (5%).

Gambar 4.12 Spesimen Uji Konfirmasi Diameter Dalam

Tabel 4.46 Hasil Uji Konfirmasi Diameter Dalam

Diameter Dalam								
Eksperimen	Spesimen 1	Spesimen 2	Spesimen 3	Rata-Rata				
Kombinasi awal	7,714	7,708	7,711	7,711				
Kombinasi optimum	7,800	7,780	7,813	7,798				

Pada gambar 4.12 merupakan spesimen uji konfirmasi yang akan diukur diameter dalam dan pada tabel 4.46 menunjukan hasil uji konfirmasi diameter dalam dengan menggunakan parameter proses optimal yang terdapat pada gambar 4.9. parameter optimal yang digunakan yaitu *Layer Height* (0,20mm), *Nozzle Temperature* (250°C), *Speed Perimeters* (45mm/s), *Infill Speed* (40mm/s), *Infill Overlap* (15%), *Flow Rate* (100%), *Bed Temperature* (100°C), *Infill Density* (30%), *Fan Speed* (5%).

Tabel 4.47 Perbandingan Bentuk Pejal Dan Pipa Dengan Toleransi ± 0,5 mm

Diameter Luar							
Bentuk	Spesi	Spesi	Spesi	Rata-	Total Rata-rata	Deviasi	
	men 1	men 2	men 3	rata	Diameter luar		
Pipa	9,986	9,994	9,969	9,983		0,017	
					9,986	0,014	
Pejal	9,997	9,982	9,988	9,989	- 1000 pt - 1000 5000 1000	0,011	

Pada tabel 4.47 bahwa hasil perbandingan bentuk pejal dengan bentuk pipa dengan Ø 10 mm mendapatkan selisih 0,017 mm untuk bentuk pipa dan untuk bentuk pejal mendapatkan selisih 0,011 mm sedangkan pada total rata-rata diameter luar mendapatkan selisih 0,014 mm.

Tabel 4.48 Perbandingan Bentuk Pejal Dan Pipa Dengan Toleransi ± 0,5 mm

Tinggi spesimen							
Bentuk	Spesi men 1	Spesi men 2	Spesi men 3	Rata- Rata	Total Rata-rata Tinggi	Deviasi	
Pipa	9,971	9,980	9,966	9,972	to the secondary of	0,028	
Pejal	9,955	9,962	9,977	9,965	9,966	0,034 0,035	

Pada tabel 4.48 bahwa hasil perbandingan bentuk pejal dengan bentuk pipa dengan Ø10 mm mendapatkan selisih 0,028 mm untuk bentuk pipa dan untuk bentuk pejal mendapatkan selisih 0,035 mm sedangkan pada total rata-rata tinggi spesimen mendapatkan selisih 0,034 mm.

BAB V

KESIMPULAN

5.1 Kesimpulan

Hasil dari penelitian ini dapat disimpulkan parameter proses yang optimal diameter luar spesimen yaitu *speed perimeters* (40mm/s), *Infill Speed* (40mm/s), *Layer Height* (0,28mm), *Fan Speed* (10%), *Flow Rate* (90%), *Bed Temperature* (95°C), *Infill Density* (25%), *Infill Overlap* (10%), *Nozzle Temperature* (240°C) dengan nilai uji 9,983 mm. Nilai parameter optimal tinggi spesimen yaitu *Layer Height* (0,28mm), *speed perimeters* (40mm/s), *Infill Speed* (40mm/s), *Bed Temperature* (100°C), *Nozzle Temperature* (240°C), *Flow Rate* (100%), *Infill Overlap* (5%), *Infill Density* (25%), *Fan Speed* (5%) dengan nilai uji 9,972 mm. Nilai parameter proses yang optimal untuk diameter dalam yaitu *Layer Height* (0,20mm), *Nozzle Temperature* (250°C), *Speed Perimeters* (45mm/s), *Infill Speed* (40mm/s), *Infill Overlap* (15%), *Flow Rate* (100%), *Bed Temperature* (100°C), *Infill Density* (30%), *Fan Speed* (5%) dengan nilai uji 7,798 mm.

5.2 Saran

Setelah melakukan penelitian penulis menyampaikan beberapa saran yang bisa menunjang penelitian selanjutnya supaya hasil penelitian selanjutnya lebih baik yaitu :

- Parameter prosesnya dapat dikembangkan lagi atau menggunakan lebih banyak parameter proses dari peneliti terdahulu.
- 2. Untuk kedepannya pencetakan spesimen akurasi dimensi untuk memvariasi bentuk spesimen selain kubus dan bulat.

DAFTAR PUSTAKA

Adherisma Analisis Pengendalian Kualitas Proses Stamping Part 16334sf Dengan Penerapan Metode Taguchi Di Pt. Surya Toto Indonesia, Tbk [Jurnal] // Jurnal Ilmiah Teknik Dan Manajemen Industri. - 2018.

Basavaraj C. K., Dan Vishwas, M Sstudies On Effect Of Fused Deposition Modelling Process Parameters On Ultimate Tensile Strenght And Dimensional Accuracy Of Nylon [Jurnal] // Materials Scienceand Engineering. - 2017. - Hal. 1-12.

Dian Ridlo Pamuji Optimasi Multi Respon Menggunakan Metode Taguchi Grey-Fuzzy Pada Proses End Milling Material Assab Xw-42 Dengan Pendinginan Nitrogen Cair [Jurnal] // Master Program Field Study Of Engineering And Manufacturing System Departement Of Mechanical Engineering Faculty Of Industrial Technology Sepuluh Nopember Institute Of Technology Surabaya. - 2015.

Galantucci L. M., Bodi, I., Kacani, J., & Lavecchia, F *Analysis Of Dimensional Performance For A 3d Open-Source Printer Based On Fused Deposition Modeling Technique* [Jurnal] // Procedia CIRP. - 2015. - Hal. 82-87.

Hasdiansah, Masdani, Indra Feriadi, Pristiansyah Optimasi Parameter Proses Terhadap Akurasi Dimensi Pla Food Grade Menggunakan Metode Taguchi [Jurnal] // Prosiding Seminar Nasional NCIET. - 2020.

Lanaro M., Forrestal, D. P., Scheurer, S., Slinger, D. J., Liao, S., Powell, S. K., & Woodruff, M. A. 3d *Printing Complex Chocolate Objects:Platform Design,Optimiziation And Evaluation* [Jurnal] // Journal Of Food Engineering . - 2017. - Hal. 13-22.

Mantihal S., Prakash, S., Godoi, F. C., & Bhandari, B *Optimization Of Chocolate* 3d Printing By Correlating Thermal And Flow Properties With 3d Structure Modeling [Jurnal] // Innovative Food Science & Emerging Technologies . - 2017. - Hal. 21-29.

Mpik Material Printer 3D ABS (Acrylonitrile Butadiene Styrene) [Jurnal] // Dipetik 2021, Dari Indoprinter3d: Http://Indoprinter3d.Com/. - 2017.

Pristiansyah, Hasdiansah, Sugiyarto Optimasi Parameter Proses 3D Printing FDM Terhadap Akurasi Dimensi Menggunakan Filament Eflex [Jurnal] // Manutech : Jurnal Teknologi Manufaktur. - 2019.

Setiawan Satria Yudha Pengaruh Temperatur Terhadap Kekuatan Tarik Dan Tekan Pada Proses Ekstrusi Di Mesin Printer 3D [Jurnal]. - 2019.

Tanoto Y Y., Anggono, J., Siahaan, I H., & Budiman, W The Effect Of Orientation Difference In Fused Deposition Modeling Of ABS Polymer On The Processing Time, Dimension Accuracy, And Strength [Jurnal] // Doi:10.1063/1.4968304. - 2017.

Lampiran 1

DAFTAR RIWAYAT HIDUP

1. Data Pribadi

Nama Lengkap : Reza Dwi Putra

Tempat & Tanggal lahir : Sungailiat 07 November 2000

Alamat : JL Sinar Raya Desa

Sempan, Kec. Pemali

Kabupaten Bangka, Prov. Bangka

Belitung.

Jenis Kelamin : Laki-laki Agama : Islam

Telp :-

Hp : 085896293383

E-mail : rezadputra13@gmail.com

2. Riwayat Pendidikan

SD NEGERI 4 Sempan Lulus Tahun 2012 SMP NEGERI 3 Pemali Lulus Tahun 2015 SMA NEGERI 1 Pemali Lulus Tahun 2018 POLITEKNIK MANUFAKTUR NEGRI BANGKA BELITUNG

3. Riwayat Pendidikan Non Formal

_

Sungailiat, 21 Januari 2022

Reza Dwi Putra

Lampiran 2

$$S/N = -10 \log \left[\frac{1}{n} \sum_{i=1}^{n} y_i^2 \right]$$

Dimana:

n = jumlah pengulangan

y = data dari percobaan

Perhitungan S/N Ratio Diameter Luar

$$S/N = -10 LOG(\frac{1}{3}(9,750^2) + (9,790^2) + (9,790^2) = -19,8038$$

1	9,750	9,790	9,790	-19,8038
2	9,816	9,760	9,858	-19,8346
3	9,805	9,985	10,038	-19,9505
4	10,073	10,035	10,033	-20,0407
5	9,907	9,972	9,981	-19,9594
6	9,995	9,945	9,984	-19,978
7	9,935	9,928	9,896	-19,93
8	9,918	9,912	9,904	-19,9226
9	9,954	9,906	9,932	-19,9396
10	9,921	9,911	9,951	-19,937
11	9,958	9,888	9,872	-19,918
12	9,942	9,928	9,903	-19,934
13	9,910	9,904	9,963	-19,9352
14	9,909	9,934	9,881	-19,9197
15	9,873	9,896	9,879	-19,8975
16	9,897	9,896	9,891	-19,908
17	9,870	9,849	9,829	-19,8681
18	9,866	9,861	9,848	-19,8761
19	9,804	9,866	9,834	-19,8552
20	9,831	9,846	9,875	-19,8693
21	9,786	9,807	9,796	-19,8213
22	9,926	9,835	9,865	-19,8911
23	9,806	9,850	9,892	-19,8682
24	9,815	9,841	9,856	-19,8576
25	9,891	9,917	9,921	-19,9212
26	9,917	9,930	9,920	-19,9323
27	9,931	9,922	9,960	-19,9457

Perhitungan S/N Ratio Tinggi spesimen

$$S/N = -10 LOG(\frac{1}{3}(9,953^2) + (9,953^2) + (9,913^2) = -19,9475$$

1	9,953	9,953	9,913	-19,9475
2	9,920	9,900	9,957	-19,9352
3	9,880	9,917	9,953	-19,9274
4	9,957	10,000	10,003	-19,9884
5	9,967	9,960	9,967	-19,9693
6	9,940	9,957	9,997	-19,9693
7	9,967	9,987	9,977	-19,98
8	10,010	9,957	9,973	-19,9826
9	9,960	9,953	10,013	-19,9786
10	9,997	10,040	9,987	-20,007
11	10,020	10,030	9,933	-19,9952
12	9,987	9,977	9,943	-19,973
13	10,043	9,960	9,997	-20,0001
14	9,980	9,997	10,030	-20,002
15	10,010	10,047	9,963	-20,0058
16	10,017	10,000	9,993	-20,0029
17	10,000	9,980	10,000	-19,9942
18	10,003	10,023	9,967	-19,998
19	9,963	9,947	9,920	-19,9507
20	9,937	9,947	9,950	-19,9518
21	9,973	9,913	9,983	-19,962
22	9,977	9,930	9,960	-19,9614
23	9,883	9,913	9,960	-19,9291
24	9,897	9,930	9,917	-19,9256
25	9,950	9,970	9,947	-19,9614
26	9,990	9,947	9,967	-19,9722
27	9,910	9,940	9,900	-19,9273
250				

Perhitungan S/N Ratio Diameter Dalam

$S/N = -10 LOG(\frac{1}{3})(7,80)$	0^2) + $(7,670^2)$	$+(7,700^{2})$) = -17,7563
------------------------------------	-----------------------	----------------	--------------

1	7,800	7,670	7,700	-17,7563
2	7,637	7,710	7,690	-17,7062
3	7,623	7,570	7,670	-17,6404
4	7,710	7,613	7,550	-17,6444
5	7,653	7,607	7,660	-17,6619
6	7,667	7,720	7,690	-17,7212
7	7,670	7,680	7,657	-17,6948
8	7,700	7,697	7,683	-17,7223
9	7,667	7,613	7,673	-17,6744
10	7,670	7,690	7,677	-17,7061
11	7,647	7,630	7,630	-17,6569
12	7,623	7,570	7,620	-17,6213
13	7,727	7,813	7,853	-17,8395
14	7,833	7,720	7,813	-17,8294
15	7,823	7,813	7,787	-17,8504
16	7,727	7,767	7,737	-17,779
17	7,707	7,693	7,647	-17,7099
18	7,717	7,740	7,723	-17,7599
19	7,743	7,783	7,730	-17,7883
20	7,773	7,803	7,753	-17,8155
21	7,693	7,780	7,750	-17,776
22	7,767	7,717	7,733	-17,7737
23	7,733	7,690	7,747	-17,7561
24	7,687	7,757	7,757	-17,7678
25	7,703	7,807	7,800	-17,8086
26	7,790	7,693	7,713	-17,766
27	7,780	7,767	7,757	-17,8062
.53				

Lampiran 3

Nilai F Tabel

df												V1								
٧2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	161	200	216	225	230	234	237	239	241	242	243	244	245	245	246	246	247	247	248	248
2	18,5	19,0	19,2	19,2	19,3	19,3	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4
3	10,1	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81	8,79	8,76	8,74	8,73	8,71	8,70	8,69	8,68	8,67	8,67	8,66
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,94	5,91	5,89	5,87	5,86	5,84	5,83	5,82	5,81	5,80
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77	4,74	4,70	4,68	4,66	4,64	4,62	4,60	4,59	4,58	4,57	4,56
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,03	4,00	3,98	3,96	3,94	3,92	3,91	3,90	3,88	3,87
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64	3,60	3,57	3,55	3,53	3,51	3,49	3,48	3,47	3,46	3,44
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35	3,31	3,28	3,26	3,24	3,22	3,20	3,19	3,17	3,16	3,15
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14	3,10	3,07	3,05	3,03	3,01	2,99	2,97	2,96	2,95	2,94
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98	2,94	2,91	2,89	2,86	2,85	2,83	2,81	2,80	2,79	2,77
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85	2,82	2,79	2,76	2,74	2,72	2,70	2,69	2,67	2,66	2,65
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75	2,72	2,69	2,66	2,64	2,62	2,60	2,58	2,57	2,56	2,54
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67	2,63	2,60	2,58	2,55	2,53	2,51	2,50	2,48	2,47	2,46
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60	2,57	2,53	2,51	2,48	2,46	2,44	2,43	2,41	2,40	2,39
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54	2,51	2,48	2,45	2,42	2,40	2,38	2,37	2,35	2,34	2,33
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,46	2,42	2,40	2,37	2,35	2,33	2,32	2,30	2,29	2,28
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45	2,41	2,38	2,35	2,33	2,31	2,29	2,27	2,26	2,24	2,23
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41	2,37	2,34	2,31	2,29	2,27	2,25	2,23	2,22	2,20	2,19
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38	2,34	2,31	2,28	2,26	2,23	2,21	2,20	2,18	2,17	2,16
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35	2,31	2,28	2,25	2,22	2,20	2,18	2,17	2,15	2,14	2,12

User name.

Nassey

Check date:

19.01.2022 14:25:59 WIB

Report date:

19.01.2022 14:27:14 WIB

Check ID: 59292003

Check type: Doc vs Internet

User ID: 114108

File name: cek plagiat reza

Page count: 56 Word count: 11205 Character count: 72614 File size: 2.64 MB File ID: 70250315

18.5% Matches

Highest match: 4.2% with Internet source (http://ncat.us/files/reports/2012/rep12-02.pdf)

18.5% Internet sources

783

... Page SI

No Library search was conducted

0% Quotes

Exclusion of quotes is off

Exclusion of references is off

0% Exclusions

No exclusions

Modifind

Text modifications detected. Find more details in the online report.

Replaced characters

PORM-PPR-3- 4: Bimbingan Proyek Akhir

		FORM BIMBINGAN PROYEK AKHIR TAHUN AKADEMIK Zezi/zezi	
JUDUL	akurans	Bundhan Metate toguchi	
Nama Mahasiswa	8020 D	our Putra NIRM: 1041823	
Nama Pembimbing		Simunisyan Suzen, S.S.T.M.T meah, S.S.T., M.EM	
Pertemuan Ke	Tanggal	Topik Bimbingan	Pembimbing
	3-8-200	plembanes tenting Princetor SDPM	do
	24-8-2021	Wengerer ferming trepose jadren.	#
3	EA-B-Edi	monitoring tentury Pergounter SOATON	The
4	27-10-2021	memberies tentary temper during	Alle
	12-unou	membanes tenenny SIN Paris	the
	Egun gar	membarus tentung anour tun wi konfu	The
7	7.12-2021	Montones teneny tuusan	4
	15-12 Enu	mentanas tentany sconnar	4
	28 - K- LINE	ecombieras fonting usi konfirment	7
		Morchance romany Silang	The.

* Jika pertemuan bimbingan lebih dari sepuluh kali, dapat mengambil Form kembali di Panitsa/Komisi Prayek Akhir

		FORM MONITORING PROYEK AKE TAHLIN AKADEMIK 2021 2022	an and a second
JUDUL		Parameter Proses 3D Ministry Pinens: Mongo unayon Pilares on Metale togues.	tomatae
Nama	2	/NIRM:/NIRM:	
Monitoring	Tanggal	Progress Alat	Paraf
2	19/12 2029	90% Han Kermpul	an of
KESIAPAN A	LAT UNTUK SID	ANG: SIAP / BELUM (coret salah satu) Mengetahui	
Pemb	Imbing 1	Plembimbing 2 Hackbroad	embimbing 3

			LAPORAN AKH AKADEMIK	nR
100			1202	
	Optimar	s Parametr	Pross	30 frinting
UDUL :	terhad Kan Fi	of Parametr	Dunen	9 Mengarin
	- Kan t	clamar 7	ks versa	income ougu
Nama	1.		NIRM:	
Mahasiswa :	2 Place	Dwi Putra	NIRM:	1041822
	4.		NIRM:	1041022
	5.		NIRM:	
	Ou al	Innounce Secretal		Halaman
	Bagi	ian yang direvisi		T Sales Country
Ralumo	· Gaga	l'atole		19.37
0	1 2	A		94
				1
			Sungaillat, 2.	
			Sungaillat, 2.	Vaid2022
			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA	Jan. 2022
			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA	Jan. 2022
			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA	Jan. 2022
			THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NA	Jan. 2022
Menyatakan te	ah menyetujui rev	visi laporan akhir yan	ye.	Jair 2022 Penguji Uldling,
Menyatakan te	lah menyetujui res	visi laporan akhir yan	ye.	Jair 2022 Penguji Uldling,
Menyatakan te	iah menyetujui res	visi laporan akhir yan	g telah dilakuka	Jair 2022 Penguji Uldling,

Description of the proof of the proof of the proof of the person here the proof of the person here the person				REVISI LAPO		KHIR	
Nama 1. bce Duri hura NIRM: 1041822 NIRM: 3. NIRM: 4. NIRM: 5. NIRM: Bagian yang direvisi Halaman Perbajian Sa Markala / Sungailiat, 26 - 01 . 2022 .	JUDUL :	Hum	Dimeri	uneverse	alma .	Prung	a Aos
Sungailiat, 26.01.2022.		2. 3. 4.	***************************************	14.1	NIRA NIRA NIRA	A: A:	922
Sungailiat, 26.01.2022.		Bag	ian yang direv	risi			Halaman
		Mengetahui, Pembimbing	visi laporan ak	hir yang tela	2	Penguji	ρ,